Repository logo
 
Publication

Probabilistic approach for comparing partitions

dc.contributor.authorSilva, Osvaldo
dc.contributor.authorBacelar-Nicolau, Helena
dc.contributor.authorNicolau, Fernando C.
dc.contributor.authorSousa, Áurea
dc.date.accessioned2015-04-28T16:00:18Z
dc.date.available2015-04-28T16:00:18Z
dc.date.issued2014
dc.description3rd SMTDA Conference Proceedings, 11-14 June 2014, Lisbon, Portugal.en
dc.description.abstractThe comparison of two partitions in Cluster Analysis can be performed using various classical coefficients (or indexes) in the context of three approaches (based, respectively, on the count of pairs, on the pairing of the classes and on the variation of information). However, different indexes usually highlight different peculiarities of the partitions to compare. Moreover, these coefficients may have different variation ranges or they do not vary in the predicted interval, but rather only in one of their subintervals. Furthermore, there is a great diversity of validation techniques capable of assisting in the choice of the best partitioning of the elements to be classified, but in general each one tends to favour a certain kind of algorithm. Thus, it is useful to find ways to compare the results obtained using different approaches. In order to assist this assessment, a probabilistic approach to comparing partitions is presented and exemplified. This approach, based on the VL (Validity Linkage) Similarity, has the advantage, among others, of standardizing the measurement scales in a unique probabilistic scale. In this work, the partitions obtained from the agglomerative hierarchical cluster analysis of a dataset in the field of teaching are evaluated using classical and probabilistic (of VL type) indexes, and the obtained results are compared.en
dc.identifier.citationSilva, Osvaldo; Bacelar-Nicolau, Helena; Nicolau, Fernando C.; Sousa, Áurea (2014). "Probabilistic Approach for Comparing Partitions". Proceedings of the 3rd Stochastic Modeling Techniques and Data Analysis International Conference (SMTDA2014), C. H. Skiadas (Eds.), 2014 ISAST, 709-717.por
dc.identifier.isbn978-618-81257-5-9 (Book)
dc.identifier.isbn978-618-81257-6-6 (e-Book)
dc.identifier.urihttp://hdl.handle.net/10400.3/3429
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherISAST - International Society for the Advancement of Science and Technologypor
dc.relation.publisherversionhttp://www.smtda.net/images/1_R-T_SMTDA2014_Proceedings_NEW.pdfpor
dc.subjectHierarchical Cluster Analysisen
dc.subjectComparing Partitionsen
dc.subjectAffinity Coefficienten
dc.subjectVL Methodologypor
dc.titleProbabilistic approach for comparing partitionsen
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FSOC%2F04647%2F2013/PT
oaire.citation.conferencePlaceLisboa, Portugalpor
oaire.citation.endPage717por
oaire.citation.startPage709por
oaire.citation.title3rd Stochastic Modeling Techniques and Data Analysis International Conference (SMTDA2014)en
oaire.fundingStream5876
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspor
rcaap.typearticlepor
relation.isProjectOfPublication4484854b-ac26-43a5-b489-765e7acc0393
relation.isProjectOfPublication.latestForDiscovery4484854b-ac26-43a5-b489-765e7acc0393

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Silva et al_1_R-T_SMTDA2014_pp. 709_717.pdf
Size:
256.92 KB
Format:
Adobe Portable Document Format
Description:
Artigo
Loading...
Thumbnail Image
Name:
Silva et al. _Abstract_SMTDA_2014_p. 166-167.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
Description:
Abstract
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.73 KB
Format:
Item-specific license agreed upon to submission
Description: