Repository logo
 
Publication

Probabilistic approach for comparing partitions

dc.contributor.authorSilva, Osvaldo
dc.contributor.authorBacelar-Nicolau, Helena
dc.contributor.authorNicolau, Fernando C.
dc.contributor.authorSousa, Áurea
dc.date.accessioned2017-10-06T08:42:27Z
dc.date.available2017-10-06T08:42:27Z
dc.date.issued2015
dc.description.abstractThe comparison of two partitions in Cluster Analysis can be performed using various classical coefficients (or indexes) in the context of three approaches (based, respectively, on the count of pairs, on the pairing of the classes and on the variation of information). However, different indexes usually highlight different peculiarities of the partitions to compare. Moreover, these coefficients may have different variation ranges or they do not vary in the predicted interval, but rather only in one of their subintervals. Furthermore, there is a great diversity of validation techniques capable of assisting in the choice of the best partitioning of the elements to be classified, but in general each one tends to favour a certain kind of algorithm. Thus, it is useful to find ways to compare the results obtained using different approaches. In order to assist this assessment, a probabilistic approach to comparing partitions is presented and exemplified. This approach, based on the VL (Validity Linkage) Similarity, has the advantage, among others, of standardizing the measurement scales in a unique probabilistic scale. In this work, the partitions obtained from the agglomerative hierarchical cluster analysis of a dataset in the field of teaching are evaluated using classical and probabilistic (of VL type) indexes, and the obtained results are compared.en
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationSilva, O.; Bacelar-Nicolau, H.; Nicolau, F. C.; & Sousa, Á. (2015). Probabilistic Approach for Comparing Partitions. In Raimondo Manca-Sally McClean-Christos H Skiadas (Eds), "New Trends in Stochastic Modeling and Data Analysis", (pp. 113-122). ISAST (International Society for the Advancement of Science and Technology).pt_PT
dc.identifier.isbn978-618-5180-06-5 (Print)
dc.identifier.isbn978-618-5180-10-2 (e-ISBN)
dc.identifier.urihttp://hdl.handle.net/10400.3/4434
dc.language.isoengpt_PT
dc.publisherISAST, International Society for the Advancement of Science and Technologypt_PT
dc.subjectHierarchical Cluster Analysisen
dc.subjectComparing Partitionsen
dc.subjectAffinity Coefficienten
dc.subjectVL Methodologyen
dc.titleProbabilistic approach for comparing partitionsen
dc.typebook part
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FSOC%2F04647%2F2013/PT
oaire.citation.endPage122pt_PT
oaire.citation.startPage113pt_PT
oaire.citation.titleNew Trends in Stochastic Modeling and Data Analysisen
oaire.fundingStream5876
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typebookPartpt_PT
relation.isProjectOfPublication4484854b-ac26-43a5-b489-765e7acc0393
relation.isProjectOfPublication.latestForDiscovery4484854b-ac26-43a5-b489-765e7acc0393

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ISAST Silva et al 2015.pdf
Size:
651.13 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.73 KB
Format:
Item-specific license agreed upon to submission
Description: