Repository logo
 
Loading...
Thumbnail Image
Publication

On cluster analysis of complex and heterogeneous data

Use this identifier to reference this record.

Advisor(s)

Abstract(s)

Cluster analysis or "unsupervised" classification (from "unsupervised learning", in pattern recognition literature) usually concerns a set of exploratory multivariate data analysis methods and techniques for grouping either statistical data units or variables into groups of similar elements, that is finding a clustering structure in the data. Classical clustering methods usually work with a set of objects as statistical data units described by a set of homogeneous (that is, of the same type) variables in a two-way framework. This paradigm can be extended in such way that data units may be either simple / first-order elements (e.g., objects, subjects, cases) or groups of / second-order or more elements from a population (e.g., subsets, samples, classes of a partition) and/or descriptive variables may simultaneously be of different (e.g., binary, multi-valued, histogram or interval) types. Therefore, one has a complex and/or heterogeneous data set under analysis. In that case classification will often be carried out by using a three-way or a symbolic/complex approach. The present work synthesizes previous methodological results and shows several developments mostly regarding hierarchical cluster analysis of complex data, where statistical data units are described by either a homogeneous or a heterogeneous set of variables. We will illustrate that approach on a case study issued from the statistical literature. The methodology has been applied with success in a data mining context, concerning multivariate analysis of real-life data bases from economy, management, medicine, education and social sciences.

Description

3rd SMTDA Conference Proceedings, 11-14 June 2014, Lisbon Portugal.

Keywords

Three-way Data Symbolic Data Interval Data Cluster Analysis Similarity Coefficient Hierarchical Clustering Model

Citation

Bacelar-Nicolau, Helena; Nicolau, Fernando C.; Sousa, Áurea; Bacelar-Nicolau, Leonor (2014). "On cluster analysis of complex and heterogeneous data". Proceedings of the 3rd Stochastic Modeling Techniques and Data Analysis International Conference (SMTDA2014), C. H. Skiadas (Eds.), 2014 ISAST, 99-108.

Research Projects

Organizational Units

Journal Issue

Publisher

ISAST - International Society for the Advancement of Science and Technology

CC License