Repository logo
 
Publication

A new approach to factorization of a class of almost-periodic triangular symbols and related Riemann-Hilbert problems.

dc.contributor.authorCâmara, Maria Cristina
dc.contributor.authorSantos, António Ferreira dos
dc.contributor.authorMartins, Maria do Carmo
dc.date.accessioned2014-01-15T15:44:30Z
dc.date.available2014-01-15T15:44:30Z
dc.date.issued2006-01-18
dc.date.updated2013-12-27T17:22:37Z
dc.descriptionCopyright © 2005 Elsevier Inc. All rights reserved.en
dc.description.abstractThe factorization of almost-periodic triangular symbols, G, associated to finite-interval convolution operators is studied for two classes of operators whose Fourier symbols are almost periodic polynomials with spectrum in the group αZ+βZ+ZαZ+βZ+Z (α,β∈]0,1[α,β∈]0,1[, α+β>1α+β>1, α/β∉Qα/β∉Q). The factorization problem is solved by a method that is based on the calculation of one solution of the Riemann-Hilbert problem GΦ+=Φ−GΦ+=Φ− in L∞(R)L∞(R) and does not require solving the associated corona problems since a second linearly independent solution is obtained by means of an appropriate transformation on the space of solutions to the Riemann-Hilbert problem. Some unexpected, but interesting, results are obtained concerning the Fourier spectrum of the solutions of GΦ+=Φ−GΦ+=Φ−. In particular it is shown that a solution exists with Fourier spectrum in the additive group αZ+βZαZ+βZ whether this group contains ZZ or not. Possible application of the method to more general classes of symbols is considered in the last section of the paper.en
dc.identifier.citationCâmara, M.C.; Santos, A.F. dos; Martins, M.C. (2006). "A new approach to factorization of a class of almost-periodic triangular symbols and related Riemann-Hilbert problems". Journal of functional Analysis, 235(2): 559-592. http://dx.doi.org/10.1016/j.jfa.2005.11.011.en
dc.identifier.issn0022-1236
dc.identifier.urihttp://hdl.handle.net/10400.3/2603
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherElsevierpor
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.jfa.2005.11.011por
dc.subjectRiemann-Hilbert Problemen
dc.subjectBounded Canonical Factorizationen
dc.subjectAlmost-Periodic Functionen
dc.subjectCorona Problemen
dc.subjectFinite-Interval Convolution Operatoren
dc.titleA new approach to factorization of a class of almost-periodic triangular symbols and related Riemann-Hilbert problems.en
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage592por
oaire.citation.issue(2)por
oaire.citation.startPage559por
oaire.citation.titleJournal of functional Analysisen
oaire.citation.volume235por
rcaap.rightsrestrictedAccesspor
rcaap.typearticlepor

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
a new approach.pdf
Size:
244.32 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: