Repository logo
 
Publication

A hybrid modelling approach for detecting seasonal variations in inland Green-Blue Ecosystems

dc.contributor.authorALMEIDA, BRUNA
dc.contributor.authorCabral, Pedro
dc.date.accessioned2024-07-04T11:15:48Z
dc.date.available2024-07-04T11:15:48Z
dc.date.issued2024
dc.description.abstractDeforestation, environmental pollution, and the overexploitation of resources, in addition to the Earth's natural cycles, are scaling up the impacts of climate change in the provision of Ecosystem Services (ES). Green-Blue Ecosystems (GBE) are impacted by climatic conditions, topography, and water presence. Data-driven modelling techniques may effectively capture the effects of seasonal variations while modelling natural ecosystems. This research proposes a hybrid modelling approach that combines Deep Learning and traditional Machine Learning, Sensitivity Analysis and Feature Importance Evaluation (FIE) to investigate seasonality effects on mapping GBE. The models, built using satellite imagery from the Spring and Summer seasons of the Mediterranean climate zone, included spectral indices, topography (DEM), and groundwater depth (GD). The model that best suited the analysis was selected using sensitivity tests and hyperparameter optimization. The study shows that land cover classes of transitional woodland shrubs, inland marshes, cultivated land parcels, and watercourses are better classified in the Spring, with an accuracy of 0.814. FIE indicates that spectral indices are the most important predictors for detecting green ecosystems in both seasons. Additionally, DEM and GD are the most relevant predictors to classify watercourses in the Summer. An analytical examination of the input data and hyperparameter settings facilitates understanding of models' behaviour while improving models' prediction. This research provides an advanced understanding of the effects of seasonal variations on the status of GBE and enhances understanding of modelling ES in areas with a growing need for changes in land use and high water supply demand.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationAlmeida, B., & Cabral, P. (2024). A hybrid modelling approach for detecting seasonal variations in inland Green-Blue Ecosystems. "Remote Sensing Applications: Society and Environment", 33, 101121. DOI:10.1016/j.rsase.2023.101121pt_PT
dc.identifier.doi10.1016/j.rsase.2023.101121pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.3/7080
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2352938523002033pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectRemote Sensingpt_PT
dc.subjectMachine Learningpt_PT
dc.subjectLand Use Classificationpt_PT
dc.subjectAquatic Ecosystemspt_PT
dc.subjectTerrestrial Ecosystemspt_PT
dc.subjectSpatiotemporal Analysispt_PT
dc.titleA hybrid modelling approach for detecting seasonal variations in inland Green-Blue Ecosystemspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.titleRemote Sensing Applications: Society and Environmentpt_PT
oaire.citation.volume33pt_PT
person.familyNameGomes Almeida
person.familyNameCabral
person.givenNameBruna Aparecida
person.givenNamePedro
person.identifierB-2616-2010
person.identifier.ciencia-id0512-DE7A-D9FE
person.identifier.ciencia-idC314-19F4-4DCC
person.identifier.orcid0000-0002-3349-1470
person.identifier.orcid0000-0001-8622-6008
person.identifier.scopus-author-id57223093094
person.identifier.scopus-author-id56221630400
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication087d0e00-e6e1-4769-8299-595d33451e31
relation.isAuthorOfPublication5f5b6ee6-a5c9-4e56-9583-5f1f64041b96
relation.isAuthorOfPublication.latestForDiscovery5f5b6ee6-a5c9-4e56-9583-5f1f64041b96

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bruna_2024.pdf
Size:
4.98 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.73 KB
Format:
Item-specific license agreed upon to submission
Description: