Logo do repositório
 
Publicação

Burned Areas Mapping Using Sentinel-2 Data and a Rao’s Q Index-Based Change Detection Approach: A Case Study in Three Mediterranean Islands’ Wildfires (2019–2022)

datacite.subject.fosCiências Naturais::Ciências Químicas
datacite.subject.sdg15:Proteger a Vida Terrestre
dc.contributor.authorTiengo, Rafaela
dc.contributor.authorMerino de Miguel, Silvia
dc.contributor.authorUchôa, Jéssica
dc.contributor.authorGuiomar, Nuno
dc.contributor.authorFreire Gil, Artur José
dc.contributor.editorSprintsin, Michael
dc.contributor.editorHuang, Wenjiang
dc.date.accessioned2026-01-26T11:50:37Z
dc.date.available2026-01-26T11:50:37Z
dc.date.issued2025-02-27
dc.description.abstractABSTRACT: This study explores the application of remote sensing-based land cover change detection techniques to identify and map areas affected by three distinct wildfire events that occurred in Mediterranean islands between 2019 and 2022, namely Sardinia (2019, Italy), Thassos (2022, Greece), and Pantelleria (2022, Italy). Applying Rao’s Q Index-based change detection approach to Sentinel-2 spectral data and derived indices, we evaluate their effectiveness and accuracy in identifying and mapping burned areas affected by wildfires. Our methodological approach implies the processing and analysis of pre- and post-fire Sentinel-2 imagery to extract relevant indices such as the Normalized Burn Ratio (NBR), Mid-infrared Burn Index (MIRBI), Normalized Difference Vegetation Index (NDVI), and Burned area Index for Sentinel-2 (BAIS2) and then use (the classic approach) or combine them (multidimensional approach) to detect and map burned areas by using a Rao’s Q Index-based change detection technique. The Copernicus Emergency Management System (CEMS) data were used to assess and validate all the results. The lowest overall accuracy (OA) in the classical mode was 52%, using the BAIS2 index, while in the multidimensional mode, it was 73%, combining NBR and NDVI. The highest result in the classical mode reached 72% with the MIRBI index, and in the multidimensional mode, 96%, combining MIRBI and NBR. The MIRBI and NBR combination consistently achieved the highest accuracy across all study areas, demonstrating its effectiveness in improving classification accuracy regardless of area characteristics.eng
dc.identifier.citationTiengo, R., Merino-De-Miguel, S., Uchôa, J., Guiomar, N., & Gil, A. (2025). Burned areas mapping using Sentinel-2 data and a Rao’s Q Index-Based change detection approach: A case study in three mediterranean Islands’ Wildfires (2019–2022). Remote Sensing, 17(5), 830. DOI:10.3390/rs17050830
dc.identifier.doi10.3390/rs17050830
dc.identifier.eissn2072-4292
dc.identifier.urihttp://hdl.handle.net/10400.3/8818
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.relationEuropean Union through the European Regional Development Fund in the framework of the Interreg V-A Spain-Portugal program (POCTEP) under the FIREPOCTEP+ (Ref. FIREPOCTEP+ (0139_FIREPOCTEP_MAS_6_E))
dc.relationNational Funds through FCT under the projects MED UIDB/05183
dc.relationCHANGE LA/P/0121/2020 (DOI 10.54499/LA/P/0121/2020)
dc.relationFundaςão para a Ciência e Tecnologia ref. UIDP/00643/2020 (DOI: https://doi.org/10.54499/UIDP/00643/2020)
dc.relation.hasversionhttps://www.mdpi.com/2072-4292/17/5/830
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectremote sensing
dc.subjectwildfire
dc.subjectburned areas
dc.subjectSentinel-2
dc.subjectRao’s Q index
dc.subjectvegetation indices
dc.titleBurned Areas Mapping Using Sentinel-2 Data and a Rao’s Q Index-Based Change Detection Approach: A Case Study in Three Mediterranean Islands’ Wildfires (2019–2022)eng
dc.typeresearch article
dcterms.referenceshttps://github.com/rafaelatiengo/Raoq_GEE
dspace.entity.typePublication
oaire.citation.endPage27
oaire.citation.issue5
oaire.citation.startPage1
oaire.citation.titleRemote Sensing
oaire.citation.volume17
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameTiengo
person.familyNameMerino de Miguel
person.familyNameUchôa
person.familyNameFreire Gil
person.givenNameRafaela
person.givenNameSilvia
person.givenNameJéssica
person.givenNameArtur José
person.identifier2775097
person.identifierI-7520-2012
person.identifier.ciencia-id9A15-C528-B4A3
person.identifier.ciencia-id6E1A-0689-D573
person.identifier.orcid0000-0002-9298-0178
person.identifier.orcid0000-0002-4764-5311
person.identifier.orcid0000-0002-5255-9207
person.identifier.orcid0000-0003-4450-8167
person.identifier.ridL-2635-2014
person.identifier.scopus-author-id24449872300
person.identifier.scopus-author-id37064609200
relation.isAuthorOfPublication37d39e04-4557-4b33-b4e9-dfbb223c82fd
relation.isAuthorOfPublication276d2362-e803-4f55-9214-41997a964673
relation.isAuthorOfPublication3b4da6a3-13a4-4bb4-94de-0a942938963a
relation.isAuthorOfPublication24d6aa34-c843-42df-b790-912f09560a80
relation.isAuthorOfPublication.latestForDiscovery37d39e04-4557-4b33-b4e9-dfbb223c82fd

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
P2855_Tiengo_2025_RemoteSensing.pdf
Tamanho:
6.22 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.73 KB
Formato:
Item-specific license agreed upon to submission
Descrição: