Publication
Measuring similarity of complex and heterogeneous data in clustering of large data sets
dc.contributor.author | Bacelar-Nicolau, Helena | |
dc.contributor.author | Nicolau, Fernando C. | |
dc.contributor.author | Sousa, Áurea | |
dc.contributor.author | Bacelar-Nicolau, Leonor | |
dc.date.accessioned | 2014-02-03T11:31:21Z | |
dc.date.available | 2014-02-03T11:31:21Z | |
dc.date.issued | 2009 | |
dc.date.updated | 2014-01-28T11:52:34Z | |
dc.description | Copyright © 2009 Polish Academy of Sciences. | en |
dc.description.abstract | Cluster analysis or classification usually concerns a set of exploratory multivariate data analysis methods and techniques for finding a clustering structure on a dataset. That may refer either to groups of statistical data units or to groups of variables. In this work we deal with a generalization of this paradigm concerning clustering of complex data described by three different types of variables, frequently present in a three-way context. We obtain compatible versions of the same affinity coefficient for measuring similarity between statistical data units described by those three types of variables. A global generalized similarity coefficient is analyzed for such kind of mixed data, often arising in data mining or knowledge mining. | en |
dc.identifier.citation | Bacelar-Nicolau, Helena; Nicolau, Fernando C.; Sousa, Áurea; Bacelar-Nicolau, Leonor (2009). "Measuring similarity of complex and heterogeneous data in clustering of large data sets", Biocybernetics and Biomedical Engineering, 29(2), 9-18. ISSN 0208-5216. | en |
dc.identifier.issn | 0208-5216 | |
dc.identifier.uri | http://hdl.handle.net/10400.3/2664 | |
dc.language.iso | eng | por |
dc.peerreviewed | yes | por |
dc.publisher | Polish Academy of Sciences | en |
dc.relation.publisherversion | http://www.ibib.waw.pl/bbe/bbefulltext/BBE_29_2_009_FT.pdf | por |
dc.relation.uri | http://hdl.handle.net/10451/5659 | |
dc.subject | Cluster Analysis | en |
dc.subject | Different Type Variables | en |
dc.subject | Similarity Coefficient | en |
dc.subject | Three-way Data | en |
dc.title | Measuring similarity of complex and heterogeneous data in clustering of large data sets | en |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.conferencePlace | Warsaw, Poland | por |
oaire.citation.endPage | 18 | por |
oaire.citation.issue | (2) | por |
oaire.citation.startPage | 9 | por |
oaire.citation.title | Biocybernetics and Biomedical Engineering | en |
oaire.citation.volume | 29 | por |
rcaap.rights | restrictedAccess | por |
rcaap.type | article | por |