Repository logo
 
Publication

The spectralrao-monitoring Python package : A RAO's Q diversity index-based application for land-cover/land-use change detection in multifunctional agricultural areas

dc.contributor.authorTassi, Andrea
dc.contributor.authorMassetti, Andrea
dc.contributor.authorGil, Artur José Freire
dc.date.accessioned2022-11-28T17:08:35Z
dc.date.available2022-11-28T17:08:35Z
dc.date.issued2022-05
dc.description.abstractMonitoring multifunctional agricultural areas is paramount to ensure their cost-effective management. The remote sensing-based detection of land-cover/land-use (LCLU) changes and analysis of vegetation dynamics constitute a relevant indicator to support robust monitoring schemes, allowing the control of agri-environmental conditions and enforcing related measures and policies. The Rao's Q diversity index (RaoQ) is frequently used to measure functional diversity in ecology, thanks to the textural analysis of the environment. This paper aims to develop and provide an open-source Python application whose workflow may constitute a RaoQ-based LCLU change monitoring tool for multifunctional agricultural areas. Here, a use case is presented for detecting and mapping LCLU changes leveraging the free and open access Landsat 8 (L8) satellite data. The workflow is organized in four main stages: (1) data processing; (2) Normalized Difference Vegetation Index (NDVI) calculation; (3) RaoQ calculation; and (4) detection and mapping of LCLU changes through thresholding of RaoQ. Three methodological approaches were developed (RaoC – “classic” RaoQ; RaoMD – “multidimensional” RaoQ, and “classic + multidimensional” RaoQ) with overall accuracies ranging from 0.88 to 0.92. An example of an agri-environmental monitoring decision-support framework based on spectralrao-monitoring is presented. The application is easily reproducible, and the code is fully available and utilizable with other sensors at different resolutions to support monitoring other types of agricultural areas.en
dc.description.sponsorshipDuring the conception and primary development of this research idea, author A. Gil was funded by FCT (Portuguese National Foundation for Science and Technology) under a postdoctoral fellowship (SFRH/BPD/100017/2014) and a subsequent Assistant Researcher contract (Decree-Law 57/2017).en
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationTassi, A., Massetti, A. & Gil, A. (2022). The spectralrao-monitoring Python package: a RAO's Q diversity index-based application for land-cover/land-use change detection in multifunctional agricultural areas. "Computers and Electronics in Agriculture", 196, 106861. DOI:10.1016/j.compag.2022.106861en
dc.identifier.doi10.1016/j.compag.2022.106861pt_PT
dc.identifier.eissn1872-7107
dc.identifier.issn0168-1699
dc.identifier.urihttp://hdl.handle.net/10400.3/6456
dc.identifier.wos000806765400004
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationECOSENSING - Development of remote sensing-based indicators for an innovative and effective ecological monitoring and assessment in European agroecosystems
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0168169922001788pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectAgricultural Monitoringen
dc.subjectLand-use Changeen
dc.subjectLand-cover Changeen
dc.subjectAgri-environmental Indicatoren
dc.subjectLandsat 8en
dc.titleThe spectralrao-monitoring Python package : A RAO's Q diversity index-based application for land-cover/land-use change detection in multifunctional agricultural areasen
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleECOSENSING - Development of remote sensing-based indicators for an innovative and effective ecological monitoring and assessment in European agroecosystems
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/OE/SFRH%2FBPD%2F100017%2F2014/PT
oaire.citation.conferencePlaceNetherlandsen
oaire.citation.titleComputers and Electronics in Agricultureen
oaire.citation.volume196pt_PT
oaire.fundingStreamOE
person.familyNameFreire Gil
person.givenNameArtur José
person.identifierI-7520-2012
person.identifier.ciencia-id6E1A-0689-D573
person.identifier.orcid0000-0003-4450-8167
person.identifier.scopus-author-id37064609200
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication24d6aa34-c843-42df-b790-912f09560a80
relation.isAuthorOfPublication.latestForDiscovery24d6aa34-c843-42df-b790-912f09560a80
relation.isProjectOfPublication2fb6d7ee-d474-4492-b036-f7c61f88ece2
relation.isProjectOfPublication.latestForDiscovery2fb6d7ee-d474-4492-b036-f7c61f88ece2

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
P1965_Gil_2022_ComputersElectronicsAgriculture.pdf
Size:
8.5 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.73 KB
Format:
Item-specific license agreed upon to submission
Description: