Repository logo
 
Publication

Prediction of the potential distribution of Drosophila suzukii on Madeira Island using the maximum entropy modeling.

dc.contributor.authorMacedo, Fabrício Lopes De
dc.contributor.authorRagonezi, Carla
dc.contributor.authorReis, Fábio
dc.contributor.authorFreitas, José G.R. de
dc.contributor.authorLopes, David João Horta
dc.contributor.authorAGUIAR, ANTÓNIO
dc.contributor.authorCravo, Délia
dc.contributor.authorCarvalho, Miguel A. A. Pinheiro
dc.date.accessioned2024-01-12T14:34:30Z
dc.date.available2024-01-12T14:34:30Z
dc.date.issued2023-09-06
dc.description.abstractABSTRACT: Drosophila suzukii is one of the main pests that attack soft-skinned fruits and cause significant economic damage worldwide. Madeira Island (Portugal) is already affected by this pest. The present work aimed to investigate the potential distribution of D. suzukii on Madeira Island to better understand the limits of its geographical distribution on the island using the Maximum Entropy modeling (MaxEnt). The resultant model provided by MaxEnt was rated as regular discrimination with the area under the curve (AUC, 0.7–0.8). Upon scrutinizing the environmental variables with the greatest impact on the distribution of D. suzukii, altitude emerged as the dominant contributor, with the highest percentage (71.2%). Additionally, elevations ranging from 0 to 500 m were identified as appropriate for the species distribution. With the results of the model, it becomes possible to understand/predict which locations will be most suitable for the establishment of the analyzed pest and could be further applied not only for D. suzukii but also for other species that hold the potential for substantial economic losses in this insular region.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMacedo, F. L., Ragonezi, C., Reis, F., Freitas, J. G. R., Lopes, D. H., Aguiar, A. M. F., Cravo, D., & Carvalho, M. A. A. P. (2023). Prediction of the potential distribution of Drosophila suzukii on Madeira Island using the maximum entropy modeling. “Agriculture”, 13, 1764. DOI:10.3390/ agriculture13091764 (IF2021 3,408; Q1 Agronomy)pt_PT
dc.identifier.doi10.3390/ agriculture13091764pt_PT
dc.identifier.eissn2077-0472
dc.identifier.urihttp://hdl.handle.net/10400.3/6836
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationM1420-01-0145-FEDER-000011-CASBiopt_PT
dc.relationINTERREG-MAC2014-2020pt_PT
dc.relationMAC2/1.1a/231-CUARENTAGRIpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectHabitatpt_PT
dc.subjectMaximum Entropypt_PT
dc.subjectEcological Niche Modelingpt_PT
dc.subjectModelingpt_PT
dc.subjectMachine Learningpt_PT
dc.titlePrediction of the potential distribution of Drosophila suzukii on Madeira Island using the maximum entropy modeling.pt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlaceSwitzerlandpt_PT
oaire.citation.endPage10pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleAgriculturept_PT
oaire.citation.volume13pt_PT
person.familyNameMacedo
person.familyNameRagonezi Gomes Lopes
person.familyNameReis
person.familyNameHorta Lopes
person.familyNameFRANQUINHO AGUIAR
person.familyNameCravo
person.givenNameFabrício Lopes de
person.givenNameCarla Aparecida
person.givenNameFábio
person.givenNameDavid
person.givenNameANTÓNIO MIGUEL
person.givenNameDélia
person.identifier2439118
person.identifierhttps://scholar.google.com/citations?hl=pt-PT&view_op=list_works&gmla=AJsN-F7GtjApviXUzeFpT82dvfKJflJy2nY6p12MrVk23i7IWBwUMmQqdf9If4xQKJqDAKvnPJ-s7qMllFNbC7i9BWdWHX5gg0xDJ8Ej_ZVaKD7ZyN6Sc28&user=aqaaKk8AAAAJ
person.identifier.ciencia-idBD1F-4778-60D1
person.identifier.ciencia-idFC12-D3F0-EF3D
person.identifier.ciencia-idFB1E-8C78-8F49
person.identifier.ciencia-id4A11-1CA3-AF88
person.identifier.ciencia-id1A12-DBB6-6FB8
person.identifier.orcid0000-0002-8025-6422
person.identifier.orcid0000-0002-1822-5473
person.identifier.orcid0000-0002-7525-1344
person.identifier.orcid0000-0002-3057-5871
person.identifier.orcid0000-0002-9572-2967
person.identifier.orcid0000-0003-1804-9665
person.identifier.scopus-author-id39861432500
person.identifier.scopus-author-id36460033800
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication432bf457-4608-4b05-944e-ec70d53ed730
relation.isAuthorOfPublicationcedca44a-3f7b-4182-b0b5-be1274c541c3
relation.isAuthorOfPublication58752704-f31a-41d4-a564-0fa394c005d3
relation.isAuthorOfPublicationb06dd5fc-5dba-46db-abb1-fcd4fd240681
relation.isAuthorOfPublication0f83ce29-0247-45e5-a319-d867a89f82a4
relation.isAuthorOfPublication318b0f39-d33f-4816-b193-b98d09660a4e
relation.isAuthorOfPublication.latestForDiscoveryb06dd5fc-5dba-46db-abb1-fcd4fd240681

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
P2169_Lopes_2023_Agriculture.pdf
Size:
5.14 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.73 KB
Format:
Item-specific license agreed upon to submission
Description: