Repository logo
 
Publication

Clustering Validation in the Context of Hierarchical Cluster Analysis: an Empirical Study

dc.contributor.authorSilva, Osvaldo Dias Lopes da
dc.contributor.authorSousa, Áurea
dc.contributor.authorBacelar-Nicolau, Helena
dc.date.accessioned2025-02-06T10:26:39Z
dc.date.available2025-02-06T10:26:39Z
dc.date.issued2023
dc.description.abstractABSTRACT: The evaluation of clustering structures is a crucial step in cluster analysis. This study presents the main results of the hierarchical cluster analysis of variables concerning a real dataset in the context of Higher Education. The goal of this research is to find a typology of some relevant items taking into account both the homogeneity and the isolation of the clusters.Two similarity measures, namely the standard affinity coefficient and Spearman’s correlation coefficient, were used, and combined with three probabilistic (AVL, AVB and AV1) aggregation criteria, from a parametric family in the scope of the VL (Validity Link) methodology. The best partitions were selected based on some validation indices, namely the global STAT levels statistics and the measures P(I2, Σ) and , adapted to the case of similarity coefficients. In order to evaluate the clusters and identify their most representative elements, the Mann and Whitney U statistics and the silhouette plot were also used.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationSilva, O., Sousa, Á., & Bacelar-Nicolau, H. (2023). Clustering validation in the context of hierarchical cluster analysis: an empirical study. In P. Brito, J. G. Dias, B. Lausen, A. Montanari & R. Nugent (Eds.), Classification and data science in the digital age, pp. 343-351. Springer.pt_PT
dc.identifier.doihttps://doi.org/10.1007/978-3-031-09034-9_37pt_PT
dc.identifier.isbn978-3-031-09034-9
dc.identifier.urihttp://hdl.handle.net/10400.3/7271
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.relationThis work is financed by national funds through FCT– Founda tion for Science and Technology, I.P., within the scope of the project «UIDB/04647/2020» of CICS.NOVA– Centro de Ciências Sociais da Universidade Nova de Lisboa.pt_PT
dc.relation.publisherversionhttps://link.springer.com/book/10.1007/978-3-031-09034-9pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectClustering Validationpt_PT
dc.subjectAffinity Coefficientpt_PT
dc.subjectSpearman Correlation Coefficientpt_PT
dc.subjectVL Methodologypt_PT
dc.titleClustering Validation in the Context of Hierarchical Cluster Analysis: an Empirical Studypt_PT
dc.typebook part
dspace.entity.typePublication
oaire.citation.endPage351pt_PT
oaire.citation.startPage343pt_PT
oaire.citation.titlehttps://link.springer.com/book/10.1007/978-3-031-09034-9pt_PT
oaire.citation.volumeStudies in Classification, Data Analysis, and Knowledge Organization - Classification and Data Science in the Digital Agept_PT
person.familyNameSilva
person.familyNameSousa
person.familyNameBacelar-Nicolau
person.givenNameOsvaldo Dias Lopes
person.givenNameÁurea
person.givenNameHelena
person.identifier1242931
person.identifier.ciencia-idBB18-ED20-169F
person.identifier.ciencia-idF918-C1BD-E8CE
person.identifier.orcid0000-0002-0269-8153
person.identifier.orcid0000-0003-3151-5237
person.identifier.orcid0000-0001-9663-3977
person.identifier.ridAAD-3290-2019
person.identifier.scopus-author-id35184112600
person.identifier.scopus-author-id26533966300
rcaap.rightsopenAccesspt_PT
rcaap.typebookPartpt_PT
relation.isAuthorOfPublication92d4408a-8147-4dd0-a990-010265007aff
relation.isAuthorOfPublication0f4ca62c-8f83-4e38-bc0d-3e670faf1f1d
relation.isAuthorOfPublicationfff72bb8-164f-4d95-b9f5-39a2db8f13b1
relation.isAuthorOfPublication.latestForDiscovery92d4408a-8147-4dd0-a990-010265007aff

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
978-3-031-09034-9_37.pdf
Size:
309.45 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.73 KB
Format:
Item-specific license agreed upon to submission
Description: