Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Bryophyte Diversity along an Elevational Gradient on Pico Island (Azores, Portugal)Publication . Coelho, Márcia Catarina Mendes; Gabriel, Rosalina; Hespanhol, Helena; Borges, Paulo A. V.; Ah-Peng, ClaudineThe study of elevational patterns is a valuable method for inferring the influence of the climate and other variables in the regional distributions of species. Bryophytes are ideal for revealing different environmental patterns in elevational studies, since they occur from sea level to above the tree line. Taking advantage of the long elevational transect of Pico Island and the use of standardized survey methods, our main aims were: (1) to identify and characterize the alpha and beta diversities of bryophytes across the full elevational gradient (12 sites of native vegetation, ranging from 10 to 2200 m above sea level [a.s.l.]); (2) to detect the ecological factors driving bryophyte composition; (3) to identify bryophytes’ substrate specificity; and (4) to check the presence of rare and endemic species. The identification of 878 microplots yielded 141 species (71 liverworts and 70 mosses), almost half of those known to occur on Pico Island. The bryophyte species richness followed a parabolic unimodal pattern with a mid-elevation peak, where the richest native forests occur. A canonical correspondence analysis (CCA) of the bryophyte composition and explanatory variables revealed the effect of the elevation, precipitation, disturbance, richness of vascular plants and bark pH in explaining bryophyte compositions at regional levels. Very few species of bryophytes showed substrate specificity. Pico Island’s elevational gradient could be an asset for studying long-term changes in bryophyte species composition and alpha diversity under global change.
- Seasonal Hydration Status of Common Bryophyte Species in Azorean Native VegetationPublication . Coelho, Márcia Catarina Mendes; Gabriel, Rosalina; Ah-Peng, ClaudineABSTRACT: Bryophytes play a crucial role in the ecosystem’s water compartment due to their unique ability to retain water. However, their role within temperate native ecosystems is mostly unknown. To address this knowledge gap, a study was conducted on Terceira Island (Azores), focusing on 14 bryophyte species found at different altitudes (40 m, 683 m, and 1012 m); five samples were collected monthly, per species and location, and their fresh, saturated, and dry weights were examined in the laboratory; four species were collected from more than one site. Generalized linear models (GLM) were used to assert the influence of climate factors (temperature, precipitation, and relative humidity) and environmental variables on two water indicators: field water content (FWC) and relative water content (RWC). None of the examined factors, per se, were able to explain all cases. Species appear to respond to climate according to a limiting factor effect: at lower elevations, precipitation was determinant, while at medium elevations, FWC was influenced by a combination of precipitation and relative humidity. At higher elevations, temperature was retained for seven of the nine studied species. The RWC values indicated that the 14 bryophyte species remained hydrated throughout the year but rarely reached their maximum water-holding capacity, even at the highest altitude. Understanding the mechanisms by which native bryophytes acquire, store, and release water is crucial for comprehending the resilience of native vegetation in the face of climate change. This knowledge can also enable the development of strategies to mitigate the effects of climate change and protect vital water resources.
- Characterizing and quantifying water content in 14 species of bryophytes present in azorean native vegetationPublication . Coelho, Márcia Catarina Mendes; Gabriel, Rosalina; Ah-Peng, ClaudineBryophytes are an important component of plant diversity, may be found from sea level to mountaintops, and are particularly conspicuous on the Azores islands. These plants rely on environmental water, which acquires intercepting rain and dew (liquid water) and uses fog (water vapor), and transports both externally, by capillary forces, and internally, in different cells (specialized or not). This study characterizes and quantifies the ability of six liverworts and eight mosses to retain water, through different pathways, and to lose water by evaporation. Twelve replicates of each species were collected in Azorean native vegetation during the summer of 2016. The absolute water content (AWC) was obtained through measurements of specimens saturated, without free water, and completely dry. Most of the 14-target species showed an ectohydric behavior pattern retaining more than 60% of water through gametophyte surface. The AWC value ranged from 646% in Polytrichum commune to 5584% in Sphagnum subnitens. The water loss by direct evaporation showed, for most of species, an exponential decay curve along time. Understanding how much native bryophytes, acquire, store, and release water into the system contributes not only to the knowledge of native vegetation resilience but also to potential impacts on the availability and quality of water—a major ecosystem service performed by bryophytes.