Loading...
1 results
Search Results
Now showing 1 - 1 of 1
- Cálculo integral e aplicaçõesPublication . Medeiros, PauloO Cálculo Diferencial e Integral, ou simplesmente Cálculo, é um ramo fundamental da Matemática, desenvolvido a partir da Álgebra e da Geometria, que se dedica ao estudo de taxas de variação de grandezas (como a inclinação de uma reta) e a acumulação de quantidades (como a área abaixo de uma curva ou o volume de um sólido). Onde há movimento ou crescimento e onde forças variáveis agem produzindo aceleração, o Cálculo é a ferramenta da Matemática a ser usada. Desenvolvido por Isaac Newton (1643-1727) e Gottfried Wilhelm Leibniz (1646-1716), em trabalhos independentes, o Cálculo auxilia em vários conceitos e definições a Matemática, Química, Física Clássica, Física Moderna e Economia. O estudante de Cálculo deve ter conhecimentos em certas áreas da Matemática, como Funções, Geometria e Trigonometria, pois são a base de todo o Cálculo. Com o advento do “Teorema Fundamental do Cálculo”, estabeleceu-se uma conexão entre os dois ramos do Cálculo: o Cálculo Diferencial e o Cálculo Integral. O Cálculo Diferencial surgiu devido ao problema da tangente, enquanto o Cálculo Integral nasceu de um problema aparentemente não relacionado, o problema do cálculo de áreas de regiões do plano. O professor de Isaac Newton em Cambridge, Barrow, descobriu que esses dois problemas estão de fato estritamente relacionados, ao perceber que a derivação e a integração são processos inversos. Foram Leibniz e Newton que exploraram essa relação e a utilizaram para transformar o Cálculo num método matemático sistemático. Particularmente ambos concluíram que o Teorema Fundamental permitia calcular áreas muito mais facilmente, sem que fosse necessário calculá-las como limites de somas (método descrito pelo matemático Riemann, pupilo de Gauss). [da Introdução]