Browsing by Author "Val Martin, Maria"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Climatology and Atmospheric Chemistry of Non-Methane Hydrocarbon Emissions over the North Atlantic.Publication . Muñoz, Mauricio; Helmig, Detlev; Hueber, Jacques; Mazzoleni, Claudio; Mazzoleni, Lynn R.; Owen, Robert; Val Martin, Maria; Fialho, Paulo; Plass-Duelmer, ChristianNon-methane hydrocarbons (NMHC) covering the C2 to C7 volatility range have been monitored at the Pico Mountain Observatory, Pico Island, Azores, Portugal, since 2004. The Observatory is located at 2225 m a.s.l. in the caldera of the Pico Mountain volcano, and during most times receives lower free tropospheric air that has been transported across the North Atlantic. The 7-year NMHC record has been analyzed for seasonal behavior of photochemical processing, atmospheric transport time, and source region using ratios of NMHC species as indicators of photochemical aging and HYSPLIT model outputs. Transport conditions resulting in elevated and low NMHC conditions were specifically studied to investigate seasonal pollution transport in the North Atlantic region.
- Impacts of anthropogenic and boreal fire emissions in the central North Atlantic lower free troposphere: summertime observations at the PICO-NARE observatory.Publication . Val Martin, Maria; Honrath, Richard; Kleissl, J.; Owen, Robert; Lapina, K.; Fialho, Paulo; Helmig, Detlev; Tanner, D. M.We present measurements of CO, O3, aerosol Black Carbon (BC) made over the central North Atlantic lower Free Troposphere (FT) during the summers of 2001-2004 along with measurements of nitrogen oxides (NOx and NOy) made during the summer of 2004 (ICARTT period) and non-methane hydrocarbons (NMHCs) made during the winter 2004-spring 2005.
- Large-scale impacts of anthropogenic and boreal fire emissions apparent in multi-year free tropospheric observations in the Azores.Publication . Honrath, Richard; Val Martin, Maria; Kleissl, J.; Owen, Robert; Lapina, K.; Fialho, Paulo; Helmig, Detlev; Tanner, D. M.Pico Mountain in the Azores Islands provides an ideal location for studies of the central N. Atlantic lower free troposphere. The PICO-NARE station has operated there since summer 2001. Here, we present key findings from summertime measurements, during 2001-2004. Main Findings: Anthropogenic and boreal wildfire emissions dominate variations in CO and have major impacts on O3, nitrogen oxides, non-methane hydrocarbons (NMHCs) and black carbon.
- Late summer changes in burning conditions in the boreal regions and their implications for NO x and CO emissions from boreal firesPublication . Lapina, K.; Honrath, Richard; Owen, R. Chris; Val Martin, Maria; Hyer, E. J.; Fialho, PauloBuilding emission inventories for the fires in boreal regions remains a challenging task with significant uncertainties in the methods used. In this work, we assess the impact of seasonal trends in fuel consumption and flaming/smoldering ratios on emissions of species dominated by flaming combustion (e.g., NO x ) and species dominated by smoldering combustion (e.g., CO). This is accomplished using measurements of CO and NO y at the free tropospheric Pico Mountain observatory in the central North Atlantic during the active boreal fire seasons of 2004 and 2005. ΔNO y /ΔCO enhancement ratios in aged fire plumes had higher values in June-July (7.3 × 10−3 mol mol−1) relative to the values in August-September (2.8 × 10−3 mol mol−1), indicating that NO x /CO emission ratios declined significantly as the fire season progressed. This is consistent with our understanding that an increased amount of fuel is consumed via smoldering combustion during late summer, as deeper burning of the drying organic soil layer occurs. A major growth in fuel consumption per unit area is also expected, due to deeper burning. Emissions of CO and NO x from North American boreal fires were estimated using the Boreal Wildland Fire Emissions Model, and their long-range transport to the sampling site was modeled using FLEXPART. These simulations were generally consistent with the observations, but the modeled seasonal decline in the ΔNO y /ΔCO enhancement ratio was less than observed. Comparisons using alternative fire emission injection height scenarios suggest that plumes with the highest CO levels at the observatory were lofted well above the boundary layer, likely as a result of intense crown fires.
- North American Boreal Wildfire and Anthropogenic Emissin Impacts in the Lower Free Troposphere over the North Atlantic Region: observations at the PICO-NARE stationPublication . Fialho, Paulo; Val Martin, Maria; Honrath, Richard; Owen, Robert; Pfister, Gabriele; Lapina, K.; Barata, FilipeWe present analyses of CO, O3, nitrogen oxides (NOx and NOy) and aerosol black carbon (BC) measurements made in the lower free troposphere (FT) over the North Atlantic region during summers 2004 (ICARTT period) and 2005.
- A permanent free tropospheric observatory at Pico summit in the Azores Islands? Past measurements (2001–2005) and future plans.Publication . Honrath, Richard; Fialho, Paulo; Helmig, Detlev; Val Martin, Maria; Owen, Robert; Kleissl, J.; Strane, J. M.; Dziobak, Michael P.; Tanner, D. M.; Barata, Filipe; Lapina, K.Pico mountain in the Azores Islands provides a base for continuous, free tropospheric measurements that is unique in the central North Atlantic region. The PICO-NARE station was installed there in 2001 as a temporary observatory. However, the location proved ideal for studies of aged emissions from anthropogenic (N. American) and boreal fire (N. American and Russian) emissions, as well as for less frequent interception of European and African plumes. As a result, station operation was continued through summer 2005, and we are planning for continuing operation and conversion into a permanent Portuguese GAW station in the future. This poster will provide an overview of the station, the measurements made there, typical transport pathways to the station and interannual variability in transport, and an overview of the full suite of multi-season observations and key findings from measurements to date. In addition, data availability and near-term and long-term plans for the station's future will be discussed.
- Regional and hemispheric impacts of anthropogenic and biomass burning emissions on summertime CO and O3 in the North Atlantic lower free tropospherePublication . Honrath, Richard; Owen, R. Chris; Val Martin, Maria; Reid, J. S.; Lapina, K.; Fialho, Paulo; Dziobak, Michael P.; Kleissl, J.; Westphal, D. L.We report summertime measurements of CO and O3 obtained during 2001–2003 at the PICO-NARE mountaintop station in the Azores. Frequent events of elevated CO mixing ratios were observed. On the basis of backward trajectories arriving in the free troposphere and global simulations of biomass burning plumes, we attribute nearly all these events to North American pollution outflow and long-range transport of biomass burning emissions. There was a high degree of interannual variability in CO levels: median [CO] ranged from 65 ppbv in 2001 to 104 ppbv in 2003. The highest concentrations were associated with transport of Siberian fire emissions during summer 2003, when Siberian fire activity was unusually high. Ozone mixing ratios also increased (by up to ∼30 ppbv) during the fire events. These findings demonstrate the significant hemispheric scale impact that biomass burning events have on background CO and O3 levels. O3 enhancements of similar magnitude were also observed in North American pollution outflow. O3 and CO were correlated during North American outflow events, with a slope averaging 1.0 (d[O3]/d[CO], ppbv/ppbv) when no fire impact was present. This slope is more than 80% larger than early 1990s observations made in the eastern United States and nearshore outflow region, even after accounting for declining U.S. CO emissions and for CO loss during transport to the Azores, and is not consistent with simple dilution of U.S. outflow with marine background air. We conclude that a significantly larger amount of O3 production occurred in the air sampled during this study, and we suggest several potential reasons for this, each of which could imply potentially significant shortcomings in current estimates of the hemispheric impact of North American emissions on tropospheric ozone and should be evaluated in future studies.
- Significant enhancements of nitrogen oxides, black carbon, and ozone in the North Atlantic lower free troposphere resulting from North American boreal wildfiresPublication . Val Martin, Maria; Honrath, Richard; Owen, R. Chris; Pfister, Gabriele; Fialho, Paulo; Barata, FilipeExtensive wildfires burned in northern North America during summer 2004, releasing large amounts of trace gases and aerosols into the atmosphere. Emissions from these wildfires frequently impacted the PICO-NARE station, a mountaintop site situated 6–15 days downwind from the fires in the Azores Islands. To assess the impacts of the boreal wildfire emissions on the levels of aerosol black carbon (BC), nitrogen oxides and O3 downwind from North America, we analyzed measurements of CO, BC, total reactive nitrogen oxides (NO y ), NO x (NO + NO2) and O3 made from June to September 2004 in combination with MOZART chemical transport model simulations. Long-range transport of boreal wildfire emissions resulted in large enhancements of CO, BC, NO y and NO x , with levels up to 250 ppbv, 665 ng mˉ³, 1100 pptv and 135 pptv, respectively. Enhancement ratios relative to CO were variable in the plumes sampled, most likely because of variations in wildfire emissions and removal processes during transport. Analyses of ΔBC/ΔCO, ΔNO y /ΔCO and ΔNO x /ΔCO ratios indicate that NO y and BC were on average efficiently exported in these plumes and suggest that decomposition of PAN to NO x was a significant source of NO x . High levels of NO x suggest continuing formation of O3 in these well-aged plumes. O3 levels were also significantly enhanced in the plumes, reaching up to 75 ppbv. Analysis of ΔO3/ΔCO ratios showed distinct behaviors of O3 in the plumes, which varied from significant to lower O3 production. We identify several potential reasons for the complex effects of boreal wildfire emissions on O3 and conclude that this behavior needs to be explored further in the future. These observations demonstrate that boreal wildfire emissions significantly contributed to the NO x and O3 budgets in the central North Atlantic lower free troposphere during summer 2004 and imply large-scale impacts on direct radiative forcing of the atmosphere and on tropospheric NO x and O3.