Browsing by Author "Quicke, Donald L. J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Are island and mainland biotas different? Richness and level of generalism in parasitoids of a microlepidopteran in MacaronesiaPublication . Santos, Ana M. C.; Fontaine, Colin; Quicke, Donald L. J.; Borges, Paulo A. V.; Hortal, JoaquínIsland communities are exposed to several evolutionary and ecological processes that lead to changes in their diversity and structure compared to mainland biotas. These phenomena have been observed for various taxa but not for parasitoids, a key group in terms of community diversity and functioning. Here we use the parasitoid communities associated with the moth Acroclita subsequana (Lepidoptera: Tortricidae) in the Macaronesian region, to test whether species richness differs between islands and mainland, and whether island parasitoid faunas are biased towards generalist species. Host larvae were collected on several islands and adjacent mainland, carefully searched for ectoparasitoid larvae and dissected to recover any endoparasitoids. Parasitoids were classified as idiobionts, which usually have a wide host range (i.e. generalists), or koinobionts that are considered specialists. Mainland species richness was lower than expected by chance, with most of the species being koinobionts. On the other hand, island communities showed a greater proportion of idiobiont species. Overall parasitism rates were similar between islands and mainland, but islands had higher rates of parasitism by idiobionts than expected by chance, and mainland areas showed the highest koinobiont parasitism rates. These results suggest that island parasitoid communities are dominated by generalists, in comparison to mainland communities. Several hypotheses may explain this pattern: (1) generalist parasitoids might have better dispersal abilities; (2) they may be less constrained by ‘sequential dependencies’; and (3) island parasitoids probably have fewer competitors and/or predators, thus favouring the establishment of generalists. New studies including multiple hosts, other habitats, and/or more islands are necessary to identify which of these processes shape island parasitoid communities.
- Are species-area relationships from entire archipelagos congruent with those of their constituent islands?Publication . Santos, Ana C.; Whittaker, Robert J.; Triantis, Kostas A.; Borges, Paulo A. V.; Jones, Owen R.; Quicke, Donald L. J.; Hortal, JoaquínAIM To establish the extent to which archipelagos follow the same species–area relationship as their constituent islands and to explore the factors that may explain departures from the relationship. LOCATION Thirty-eight archipelagos distributed worldwide. METHODS We used ninety-seven published datasets to create island species–area relationships (ISARs) using the Arrhenius logarithmic form of the power model. Observed and predicted species richness of an archipelago and of each of its islands were used to calculate two indices that determined whether the archipelago followed the ISAR. Archipelagic residuals (ArcRes) were calculated as the residual of the prediction provided by the ISAR using the total area of the archipelago, standardized by the total richness observed in the archipelago. We also tested whether any characteristic of the archipelago (geological origin and isolation) and/or taxon accounts for whether an archipelago fits into the ISAR or not. Finally, we explored the relationship between ArcRes and two metrics of nestedness. RESULTS The archipelago was close to the ISAR of its constituent islands in most of the cases analysed. Exceptions arose for archipelagos where (i) the slopes of the ISAR are low, (ii) observed species richness is higher than expected by the ISAR and/or (iii) distance to the mainland is small. The archipelago's geological origin was also important; a higher percentage of oceanic archipelagos fit into their ISAR than continental ones. ArcRes indicated that the ISAR underpredicts archipelagic richness in the least isolated archipelagos. Different types of taxon showed no differences in ArcRes. Nestedness and ArcRes appear to be related, although the form of the relationship varies between metrics. MAIN CONCLUSIONS Archipelagos, as a rule, follow the same ISAR as their constituent islands. Therefore, they can be used as distinct units themselves in large-scale biogeographical and macroecological studies. Departure from the ISAR can be used as a crude indicator of richness-ordered nestedness, responsive to factors such as isolation, environmental heterogeneity, number and age of islands.
- Species pool structure determines the level of generalism of island parasitoid faunasPublication . Santos, Ana M. C.; Quicke, Donald L. J.; Borges, Paulo A. V.; Hortal, JoaquínAIM To examine whether island parasitoid faunas are biased towards generalists when compared with the mainland and their species pool, and to evaluate the effects of climate, island characteristics and regional factors on the relative proportions of idiobionts (i.e. generalists) and koinobionts (i.e. specialists) of two parasitic wasp families, Braconidae and Ichneumonidae. LOCATION Seventy-three archipelagos distributed world-wide. METHODS We used data on the distribution and biology obtained from a digital catalogue and several literature sources. We related level of generalism, measured as the ratio between the number of idiobiont and koinobiont species, to climatic, physiographic and regional factors using generalized linear models. We compared models by means of Akaike weighting, and evaluated the spatial structure of their residuals. We used partial regressions to determine whether the final models account for all latitudinal structure in the level of generalism. RESULTS Islands host comparatively more idiobionts than continental areas. Although there is a latitudinal gradient in the level of generalism of island faunas correlating with both environmental factors and island characteristics, the most important determinant of island community structure is their source pool. This effect is stronger for ichneumonids, where generalism is higher in the Indomalayan region, arguably due to the higher diversity of endophytic hosts in its large rain forests. MAIN CONCLUSIONS The level of generalism of island parasitoid faunas is largely constrained by regional factors, namely by the structure of the species pool, which emphasizes the importance of including regional processes in our understanding of the functioning of ecological communities. The fact that generalist species are more predominant in islands with a large cover of rain forests pinpoints the importance of the indirect effects of ecological requirements on community structure, highlighting the complex nature of geographical gradients of diversity.