Browsing by Author "Nunes, Alice"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Ant functional structure and diversity changes along a post-grazing succession in Mediterranean oak woodlandsPublication . Wendt, Clara Frasconi; Nunes, Alice; Köbel, Melanie; Verble, Robin; Matos, Paula; Boieiro, Mário; Branquinho, CristinaGrazing exclusion may be used to promote the recovery of disturbed ecosystems. A promising way for the evaluation of its effectiveness is through the monitoring of key biological groups, particularly those more responsive to disturbance and playing key roles in ecosystem functioning. Ants have been used as ecological indicators as they are abundant, diverse and sensitive to environmental changes. Here, we aimed to evaluate changes in ant taxonomic and functional structure and diversity, using functional groups, along a post-grazing succession in a Mediterranean oak woodland and to understand which environmental variables drive them. The post-grazing succession comprised a chronosequence of grazing excluded sites for 8, 12 and 18 years and a grazed control site. We found that ant species richness, functional structure and diversity increased with years since grazing exclusion: Generalist/Opportunist and the Hot Climate specialists increased in the 18 years grazing excluded site, while the Cryptic Species group increased in the 12 years grazing excluded site. Yet, their responses were not linear over time. Time since grazing exclusion and vegetation structure explained differences in ant taxonomic and functional structure and diversity. The Invasive/Exotic group dominated in all sites, except in the longest excluded site, where it occurred in the lowest proportion. The invasive Argentine ant dominated the grazed site, where it may have led to ant taxonomic and functional homogenization. Our results suggest that the time and changes in habitat structure may favour the recovery of ant biodiversity, although the presence of the invasive Argentine ant species may have slowed it down.
- Local environmental variables are key drivers of ant taxonomic and functional beta-diversity in a Mediterranean drylandPublication . Wendt, Clara Frasconi; Ceia-Hasse, Ana; Nunes, Alice; Verble, Robin; Santini, Giacomo; Boieiro, Mário; Branquinho, CristinaThe decomposition of beta-diversity (β-diversity) into its replacement (βrepl) and richness (βrich) components in combination with a taxonomic and functional approach, may help to identify processes driving community composition along environmental gradients. We aimed to understand which abiotic and spatial variables influence ant β-diversity and identify which processes may drive ant β-diversity patterns in Mediterranean drylands by measuring the percentage of variation in ant taxonomic and functional β-diversity explained by local environmental, regional climatic and spatial variables. We found that taxonomic and functional replacement (βrepl) primarily drove patterns in overall β-diversity (βtot). Variation partitioning analysis showed that respectively 16.8%, 12.9% and 21.6% of taxonomic βtot, βrepl and βrich variation were mainly explained by local environmental variables. Local environmental variables were also the main determinants of functional β-diversity, explaining 20.4%, 17.9% and 23.2% of βtot, βrepl and βrich variation, respectively. Findings suggest that niche-based processes drive changes in ant β-diversity, as local environmental variables may act as environmental filters on species and trait composition. While we found that local environmental variables were important predictors of ant β-diversity, further analysis should address the contribution of other mechanisms, e.g. competitive exclusion and resource partitioning, on ant β-diversity.
- Seed removal decrease by invasive Argentine ants in a high Nature Value farmlandPublication . Wendt, Clara Frasconi; Nunes, Alice; Dias, Sara Lobo; Verble, Robin; Branquinho, Cristina; Boieiro, MárioSeed dispersal by ants is an important ecological process that maintains the structure and diversity of natural communities, however, it is vulnerable to biological invasions. Argentine ants are one of the worst invasive ant species and cause severe changes in ecosystem processes and native ant biodiversity declines in invaded sites. Here, we studied seed removal by ants combining observations and a cafeteria experiment with seeds of four myrmecochorous plant species (Centaurea sphaerocephala, Rosmarinus officinalis, Silybum marianum, and Ulex australis) in two sites (invaded and uninvaded) located in the Mediterranean Montado ecosystem and classified as High Nature Value farmland (HNV). Significant differences in daily seed removal rates were found between the two study sites. In uninvaded sites, several native ant species were attracted to the seeds, resulting in all seeds being removed rapidly. The majority of seed removal events were carried out by two key seed disperses Pheidole pallidula (71%) and Aphaenogaster iberica (26%) with a clear preference for diaspored with larger and heavier elaiosome (i.e., C. sphaerocephala, S. marianum). By contrast, while the Argentine ant showed some interest (68% of seeds were interacted with), no seed removal events were observed. The extirpation of the local ant fauna by the Argentine ant and its inability to ensure seed dispersal services may lead to the interference and eventually to the collapse of seed dispersal of the four studied myrmecochorous plants in the invaded site in the future. We argue that these discrete but severe consequences of an invasive species on a key ecological process may strongly affect the functioning of the Montado ecosystem.
- Using a space-for-time approach to select the best biodiversity-based indicators to assess the effects of aridity on Mediterranean drylandsPublication . Wendt, Clara Frasconi; Nunes, Alice; Verble, Robin; Santini, Giacomo; Boieiro, Mário; Branquinho, CristinaMediterranean drylands are particularly vulnerable to predicted increases in aridity which are expected to have negative consequences for biodiversity. To understand the effects of climate change on ecosystems, a framework for the selection of indicators based on the essential biodiversity variables (EBV) was proposed. In this framework, a functional approach has been suggested because functional traits have shown to be sensitive to small-scale environmental changes. Additionally, functional traits are also associated with ecosystem-limiting processes. In this context, we used ants as ecological indicators, as they are functionally important and respond in a measurable way to environmental changes. We identify which biodiversity-based indicators (e.g., taxonomic, single-trait and multi-trait indices) help track changes in Mediterranean drylands; for this, we used a space-for-time substitution climatic gradient in the western Mediterranean. Ants were sampled along an aridity gradient and identified to species level. Four continuous and seven categorical traits were measured or retrieved from literature. Continuous traits included Weber’s length, which is indicative for body length, head length, eye length and femur length; categorical traits were diet, behavioral dominance, daily activity, nest preference, mound presence, worker polymorphism and foraging strategy. We calculated taxonomic, functional structure and single- and multi-trait functional diversity indices and correlated them with aridity. We found that ant taxonomic and multi-trait functional diversity were maintained along the aridity gradient. Despite maintenance of species and functional diversity along the gradient, ant functional structure responded to aridity with increases in mean trait values of Weber’s length, eye length and femur length in the drier part of the gradient. Under wetter conditions, we found the highest proportion of ants with a seed-based diet, reflecting a potential increase in resource quantity. We observed a change in foraging strategy from group to individual as aridity increased. In conclusion, with a space-for-time substitution climatic gradient, this study shows the potential role of aridity as an environmental driver of ant trait values. These results highlight the value of ants and functional traits as indicators to track the effects of climate change on ecosystems. Finally, this study represents a starting point to monitor important species traits in the context of EBV and to use them as indicators to track the effects of aridity on Mediterranean dryland ecosystems.