Browsing by Author "Kubota, Yasuhiro"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Community dissimilarity of angiosperm trees reveals deep‐time diversification across tropical and temperate forestsPublication . Kusumoto, Buntarou; Kubota, Yasuhiro; Baselga, Andrés; Gómez‐Rodríguez, Carola; Matthews, Thomas J.; Murphy, Daniel J.; Shiono, TakayukiQUESTION: To better understand the influence of deep-time diversification on extant plant communities, we assessed how community dissimilarity increases with spatial and climatic distances at multiple taxonomic ranks (species, genus, family, and order) in angiosperm trees. We tested the prediction that the dissimilarity–distance relationship should change across taxonomic ranks depending on the deep-time diversification in different biogeographical regions reflecting geohistories and geographical settings. LOCATION: Global. METHODS: Using a data set of plot-based surveys across the globe (861 plots), we compiled a community composition matrix comprising 21,455 species, 2,741 genera, 240 families, and 57 orders. We then calculated Sørensen's pairwise dissimilarity (βsor), and its turnover (βsim) and nestedness (βsne) components, among plots within seven biogeographical regions. Finally, we modeled the relationships between the biotic dissimilarities and the spatial/climatic distances at each taxonomic rank, and compared them among regions. RESULTS: βsor and βsim increased with increasing spatial and climatic distance in all biogeographical regions: βsim was dominant in all biogeographical regions in general, while βsne showed relatively high contributions to total dissimilarity in the temperate regions with historically unstable climatic conditions. The βsim-distance curve was more saturated at smaller spatial scales in the tropics than in the temperate regions. In general, the curves became flatter at higher taxonomic ranks (order or family), with the exception of Africa, North America, and Australia, pointing to region-specific geographical constraints. CONCLUSIONS: Compositional dissimilarity was generally shaped through the abrupt turnover of species along spatial/climatic gradients. The relatively high importance of the nestedness component in the temperate regions suggests that historical dispersal filters related to extinction/colonization may play important roles. Region-specific changes in the turnover and nestedness components across taxonomic ranks suggest differential imprints of historical diversification over deep evolutionary time in shaping extant diversity patterns in each biogeographical region.
- Constraints on the distribution of species abundances indicate universal mechanisms of community assemblyPublication . Ulrich, Werner; Matthews, Thomas J.; Kubota, YasuhiroRecently, a 2018 study by Ulrich et al. introduced the Weibull distribution as a flexible approach to model the distribution of species abundances in ecological communities. They pointed to possible limitations in the realized parameter spaces of this distribution as possibly indicating ecological constraints on species abundances. Here, we explore this question in detail using three large global data sets on quantitatively assessed plant, invertebrate, and vertebrate communities. By fitting the Weibull distribution to these communities, we confirm that only a minor amount of the possible ranges in the scale and the shape parameters of the Weibull distribution are realized. Shapes of distributions become more similar across taxa with increasing species richness and average abundances. This finding points to stochastic explanations for species abundance shapes, possibly linked to local colonization and extinction dynamics. We introduce the Weibull survival time parameter as a way to define the proportion of rare species in a community. This proportion increased with increasing species richness.
- A global analysis of avian island diversity–area relationships in the AnthropocenePublication . Matthews, Thomas J.; Wayman, Joseph P.; Whittaker, Robert J.; Cardoso, Pedro; Hume, Julian P.; Sayol, Ferran; Proios, Konstantinos; Martin, Thomas E.; Baiser, Benjamin; Borges, Paulo A. V.; Kubota, Yasuhiro; dos Anjos, Luiz; Tobias, Joseph; Soares, Filipa C.; Si, Xingfeng; Ding, Ping; Mendenhall, Chase D.; Sin, Yong Chee Keita; Rheindt, Frank E.; Triantis, Kostas; Guilhaumon, François; Watson, David M.; Brotons, Lluís; Battisti, Corrado; Chu, Osanna; Rigal, FrançoisResearch on island species–area relationships (ISAR) has expanded to incorporate functional (IFDAR) and phylogenetic (IPDAR) diversity. However, relative to the ISAR, we know little about IFDARs and IPDARs, and lack synthetic global analyses of variation in form of these three categories of island diversity–area relationship (IDAR). Here, we undertake the first comparative evaluation of IDARs at the global scale using 51 avian archipelagic data sets representing true and habitat islands. Using null models, we explore how richness-corrected functional and phylogenetic diversity scale with island area. We also provide the largest global assessment of the impacts of species introductions and extinctions on the IDAR. Results show that increasing richness with area is the primary driver of the (non-richness corrected) IPDAR and IFDAR for many data sets. However, for several archipelagos, richness-corrected functional and phylogenetic diversity changes linearly with island area, suggesting that the dominant community assembly processes shift along the island area gradient. We also find that archipelagos with the steepest ISARs exhibit the biggest differences in slope between IDARs, indicating increased functional and phylogenetic redundancy on larger islands in these archipelagos. In several cases introduced species seem to have ‘re-calibrated’ the IDARs such that they resemble the historic period prior to recent extinctions.