A DNA BARCODE APPROACH OF THE LAURENCIA COMPLEX (CERAMIALES, RHODOPHYTA) IN THE TROPICAL AND SUBTROPICAL ATLANTIC OCEAN

Valéria Cassano1, Maria Machín-Sánchez2, Ana I. Neto3, Mariana C. Oliveira1, Abel Senties4, Jhoana Díaz-Larraza4, Mª Candelaria Gil-Rodríguez2, Lígia Collado-Vides5, Amanda Medeiros1, Alain Duran5 & Mutue T. Fujiy6

1Oporto, Botânica, Universidade de São Paulo, São Paulo, Brazil, vcsassano@usp.br, 2Oporto, Biologia Vegetal (Botânica), Univ. de La Laguna, Canary Islands, Spain, 3CIIMAR, CIRN & Departamento de Biologia, Universidade dos Acores, Ponta Delgada, Açores, Portugal, 4Oporto, Hidrobiologia, Univ. Autónoma Metropolitana, Iztapalapa, México, D.F., 5Department of Biological Sciences, Florida International University, Miami, Florida, USA, 6Seção de Ficología, Instituto de Botânica, São Paulo, Brazil.

INTRODUCTION

The diversity of the Laurencia complex is being assessed in tropical and subtropical Atlantic by an international cooperation project involving Brazil, Mexico, Spain (Canary Islands), Portugal (Açores and Madeira) and USA (Florida) on the base of molecular data allied to a detailed morphological study of species. The diversity of the complex was analyzed for the first time for the Atlantic Ocean, including specimens from all five localities, using the plastid 23S rRNA gene (UPA), which has been investigated as potential DNA Barcode marker for photosynthetic eukaryotes. The COI-SP gene was also used as DNA barcode, and the rbcl gene was used for phylogenetic inferences.

MATERIAL AND METHODS

Samples of the Laurencia complex, collected in Brazil, Portugal (Açores and Madeira), Spain (Canary Islands), Mexico (Caribbean Sea) and Florida (USA), were sequenced using the markers Universal Plastid Amplion (UPA), COI-SP and rbcl. For COI-SP and UPA were performed neighbor-joining (NJ) analyses using PAUP 4.0b10. For rbcl, the phylogenetic relationships were inferred with PAUP 4.0b10 and MrBayes v.3.0 beta 4. The range of genetic divergence for the markers used was calculated using “uncorrected ‘p’ distance with PAUP.

RESULTS

Fig. 1. Neighbor-joining analysis for UPA sequences for the Laurencia complex. The bootstrap values for 200 replicates are shown on the branches (only values above 70 were considered).

Fig. 2. Neighbor-joining analysis for COI-SP sequences for the Laurencia complex. The bootstrap values for 200 replicates are shown on the branches (only values above 70 were considered).

DISCUSSION

The genus Laurencia established based on rbcl sequences was also confirmed with the use of two other markers: UPA and COI-SP, forming independent clades with high support, represented by the taxa: L. manilaez, L. sp. 1 and L. sp. 2. The intergeneric divergence between Laurencia and Laurenciella for UPA and COI-SP was in the range of variation obtained from other genera of the complex, 4.9-5.8% and 10.1-13.1%, respectively.

In the analyses with the UPA and COI-SP, C. cartilagineus, type species the genus Chondrophycus, joined with Laurenciella, which indicates that these two genera can be congeneric. Further analyses are necessary to clarify the position of these taxa.

The ‘problematic’ Laurencia translucida, an endemic species from Brazil, remains an enigmatic species. Its taxonomic position has always been controversial since it shares a combination of morphological characters to the genera Chondrophycus and Laurenciella. Unlike the results with the rbcl gene, L. translucida, was positioned within the Chondrophycus clade by UPA and COI-SP markers. The rbcl sequence available of L. translucida seems to be chimeric. New rbcl sequences are necessary to confirm its taxonomic position.

Laurencia cervicornis from Florida joined with Palisada by the UPA and rbcl markers and its taxonomic position will also have to be better investigated.

The UPA gene showed to be more conserved, however, the same genetic groups were resolved with each of the three markers.

Financial support:

Fig. 3. Consensus tree derived from Bayesian analyses of rbcl sequences. The posterior probabilities are shown as thicker branches. Bootstrap supports for MP/NJ (200 replicates) are shown at the nodes (only values above 70 were considered); * indicates bootstrap support =100%.

Tab. 1. Range of genetic divergence among DNA sequences of the Laurencia complex for different markers. Problematic taxa were excluded from the comparison.

<table>
<thead>
<tr>
<th>Markers</th>
<th>Divergence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rbcl</td>
</tr>
<tr>
<td>Intergeneric</td>
<td>5.6-11.9</td>
</tr>
<tr>
<td>Interspecific</td>
<td>1.9-6.2</td>
</tr>
<tr>
<td>Intraspecific</td>
<td>0-1</td>
</tr>
</tbody>
</table>

See text for further details.
P11 – A Taxonomic Study on Calothrix – Group (Cyanobacteria) Based on Morphology and Analysis of the 16s rRNA Gene Fragment
E. Berrendero1, M. Bohunicak2, L. Stenclova1 and J. H. Kastovsky1
1University of South Bohemia, Czech Republic; 2University of South Bohemia/Academy of Sciences of the Czech Republic, Czech Republic

P12 – Relative Contribution of Environmental and Spatial Processes in Structuring Stream Macroalgal Communities
C. Z. Branco1, P. C. Bispo1, C. K. Peres2, A. F. Tonetto1 and L. H. Branco1
1São Paulo State University - UNESP, Brazil; 2Federal University of Latin American Integration – UNILA, Brazil

P13 – New Insights in the Diversity of the Genus Lobophora (Dictyotales, Phaeophyceae) Based on Molecular and Morphological Evidence
O. Camacho1, T. Sauvage1, W. Schmidt1, D. W. Freshwater2 and S. Fredericq1
1University of Louisiana at Lafayette, USA; 2University of North Carolina Wilmington, USA

P14 – A DNA Barcode Approach of the Laurencia Complex (Ceramiales, Rhodophyta) in the Tropical and Subtropical Atlantic Ocean
V. Cassano1, M. Machín-Sánchez2, A. I. Neto3, M. C. Oliveira1, A. Senties4, J. Díaz-Larrea4, M. Gil-Rodríguez5, L. Collado-Vides6, A. Medeiros1 and M. T. Fujii6
1University of São Paulo, Brazil; 2University of La Laguna, Spain; 3University of the Azores, Portugal; 4Autonomous Metropolitan University, Mexico; 5Florida International University, USA; 6Institute of Botany, Brazil

P15 – Characterization of Batrachospermum gelatinosum (L.) De Candolle and B. arcuatum Kylin (Batrachospermales, Rhodophyta) from the Iberian Peninsula
I. S. Chapuis1, M. O. Paiano2, M. Aboal3, P. M. Sánchez Castillo1, O. J. Necchi2, and M. M. Elmosallamy4
1University of Granada, Spain; 2UNESP - Campus de São José do Rio Preto, Brazil; 3University of Murcia, Spain; 4Ain Shams Unversit, Egypt

P16 – Present Day Collections of Freshwater Red Algae (Batrachospermales, Rhodophyta) from Historically Important Sites in France
W. B. Chiasson, E. D. Salomaki, and M. L. Vis
Ohio University, USA

P17 – Morphology, Phylogenetic Relationships and DNA Barcoding of the Bangiales (Rhodophyta) from King George Island, Antarctic and its Adjacent Waters
H. G. Choi1, S. M. Kim1, J. H. Kim1 and M. S. Hwang2
1Korea Polar Research Institute, Republic of Korea; 2National Fisheries Research and Development Institute, Republic of Korea

P18 – Phycological Educational Endeavors: Assessing Algal Knowledge in Museums, Zoos, Aquariums, and Herbariums
J. L. Collier1, R. Fitch2, J. Jorve3, R. Kodner4, J. F. Muhlin5 and K. Schoenrock6
1Stony Brook University, USA; 2Wenatchee Valley College, USA; 3University of British Columbia, Canada; 4Western Washington University, USA; 5Maine Maritime Academy, USA; 6University of Alabama at Birmingham, USA

P19 – Algal Turf Scrubbers: Periphyton Production and Nutrient Recovery on a South Florida Citrus Farm
P. E. D’Aiuto1, T. J. Evens2, J.P Albano1 and J.M. Patt1
1United States Department of Agriculture, USA; 2Algal Solutions, LLC, USA
western Atlantic and Red Sea specimens indicate newly found diversity representing four distinct species, with one unreported species each for Caribbean Colombia, Caribbean Panama, the NW Gulf of Mexico, and Egypt. These taxa in all likelihood correspond to new species. In addition, we propose range extensions for previously unnamed *Lobophora* spp. reported in Sun *et al.* 2012. Three recently collected species from the Red Sea are conspecific with recently characterized taxa from Japan, Palau and Malaysia, and one species from the NW Gulf of Mexico is conspecific with a sample from Curaçao in the Lesser Antilles. The morphological evidence for describing the new species of *Lobophora* will be discussed in light of the molecular-based results.

43

A DNA Barcode Approach of the *Laurencia* Complex (Ceramiales, Rhodophyta) in the Tropical and Subtropical Atlantic Ocean

V. Cassano¹, M. Machín-Sánchez², A. I. Neto³, M. C. Oliveira¹, A. Sentíes⁴, J. Díaz-Larrea⁴, M. Gil-Rodríguez⁵, L. Collado-Vides⁵, A. Medeiros¹ and M. T. Fujii⁶

(vcassano@usp.br)

¹University of São Paulo, Brazil; ²University of La Laguna, Spain; ³University of the Azores, Portugal; ⁴Autonomous Metropolitan University, Mexico; ⁵Florida International University, USA; ⁶Institute of Botany, Brazil

The diversity of the *Laurencia* complex is being assessed in tropical and subtropical Atlantic by an international cooperation project involving Brazil, Mexico, Spain (Canary Islands), Portugal (Azores and Madeira) and USA (Florida) on the base of molecular data allied to a detailed morphological study of species. The diversity of the complex was analyzed for the first time for the Atlantic Ocean, including specimens from all five localities, using the plastid 23S rRNA gene (UPA) which has been investigated as potential DNA Barcode marker for photosynthetic eukaryotes. The mitochondrial cytochrome e oxidase I gene (COI-5P) was also used as DNA barcode for the same set of species, and the rbcL gene was used for phylogenetic inferences. The range of genetic variation was compared for the three markers. The UPA proved to be more conserved; however, the same genetic groups were resolved with each of the three markers confirming the six genera currently established for the complex: *Chondrophycus, Laurencia, Laurenciella, Palisada, Osmundea* and *Yuzurua*.

44

Characterization of *Batrachospermum gelatinosum* (L.) De Candolle and *B. arcuatum* Kylin (Batrachospermales, Rhodophyta) from the Iberian Peninsula

I. S. Chapuis¹, M. O. Paiano², M. Aboal³, P. M. Sánchez Castillo¹ and O. J. Necchi²

(monica_paiano@hotmail.com)

¹University of Granada, Spain; ²UNESP - Campus de São José do Rio Preto, Brazil; ³University of Murcia, Spain

Freshwater red algae diversity in the Iberian Peninsula (Spain and Portugal) has been poorly studied. The purpose of this study is to approach the morphological and genetic variation of two most common members of the Batrachospermales in the study area, to better understand their biogeographic and phylogenetic relationships in a more global context. We compared genetically six populations each of *B. gelatinosum* and *B. arcuatum* from eight different river basins, using three molecular markers to evaluate genetic diversity: RuBisCo large subunit (rbcL) (fully sequenced at the moment), cytochrome oxidase 2-3 spacer (cox2-3) and the barcode region of cytochrome oxidase I (cox1) (preliminary data available). For the morphological comparison nine additional populations were included in the analysis. A wide morphological variation was observed for most vegetative and reproductive characters. rbcL sequences showed a relatively low genetic divergence: 98.8-100% for *B. gelatinosum* and 99.9-100% for *B. arcuatum*. We found no correlation between genetic diversity and morphological variation among the populations of both species. Some taxonomic characters are reevaluated aiming at a more reliable characterization of these species.
Program and Abstract Book

10th International Phycological Congress
4-10 August 2013, Orlando, Florida USA

Algae in a Changing World

Organized under the Auspices of

International Phycological Society

Conveners: Dr. M. Dennis Hanisak & Dr. Akshinthala K.S.K. Prasad

http://ipc10.intphycsoc.org/
Sponsors and Exhibitors

International Phycological Society

Phycological Society of America

The British Phycological Society

allen press

WILEY

WALZ Mess- und Regeltechnik

FLUID IMAGING TECHNOLOGIES

Balogh International Inc

Lubrecht & Cramer LTD