Problemas clássicos da Geometria

Helena Sousa Melo*

Hoje em dia, com a diversidade de software de geometria e programas de construções gráficas, perdeu-se a satisfação de um traçado, utilizando uma régua sem escala e um compasso.

Sabemos que a régua é usada para traçar partes de retas pela uniao de quaisquer dois de seus pontos, uma vez que a régua é infinita nos seus dois sentidos, bem como, a construção de semiretas, de segmentos de reta e de muitas outras configurações associadas, e o compasso é utilizado para construir circunferências, onde todos os pontos de uma mesma circunferência têm a mesma distância, o raio, a um mesmo ponto, o seu centro.

Mas onde está o fascínio e o desafio destes instrumentos?

Surpreendente, por estas alturas, três problemas que desempenharam um papel importante na geometria da Antiga Grécia. Alguns dos problemas apresentados para esses problemas deram origem a várias teorias, curvas e construções, mas nenhuma dessas soluções utilizou uma régua ou um compasso.

Estes famosos problemas clássicos da geometria grega são a quadratura do círculo, a triseção do ângulo e a duplicação do cubo. Mas porque são tão importantes e o que há de desafiador neles?

A quadratura do círculo foi um problema proposto inicialmente pelo filósofo grego Anaxágoras de Clazoméneas (cerca de 499 a.C. — 428 a.C.), e consistia em construir um quadrado com a mesma área de um círculo, utilizando apenas uma régua e um compasso.

Como sabemos, a área de um círculo é calculada pela fórmula \[A = \pi r^2 \], onde \(r \) é o raio, que é uma constante, aproximadamente 3,14, e \(r \) é o raio do círculo. Por sua vez, a área de um quadrado é obtida multiplicando dois de seus lados, que são iguais, ou seja, \[A = l^2 \]. Assim, para que a área de um quadrado seja igual a área de um círculo, o lado do quadrado terá que ser \(\frac{\pi r}{2} \). É impossível obter o segmento por meio da régua e do compasso.

A triseção do ângulo foi outro problema clássico da geometria grega envolvendo construções com a régua e o compasso e baseia-se em obter, dado um ângulo qualquer, um ângulo com um terço da amplitude do ângulo dado.

O problema da triseção surge naturalmente após a bisseção do ângulo. Os gregos sabiam trissectar alguns ângulos, entre eles, o ângulo de amplitude igual a 90° e o ângulo de amplitude igual a 180°.

Notemos que se o ângulo dado for de amplitude igual a um múltiplo de 45° o problema tem solução, pois algebraicamente a amplitude da triseção desse ângulo é também igual a um múltiplo de 15°. Por exemplo, se a amplitude do ângulo inicial for igual a 155° = 3 \(\cdot 45° \), a amplitude do ângulo trissectado será igual a 45° = 3 \(\cdot 15° \). Facilmente, com a régua e o compasso, conseguimos construir o ângulo resultante da triseção dos ângulos múltiplos de 45°, mas algumas das soluções obtidas não são por construção direta dessa triseção.

Se o ângulo for diferente de um múltiplo de 45°, o problema torna-se impossível de ser obtido com a construção com a régua e o compasso, mesmo que indiretamente. Hoje em dia sabemos que, por exemplo, um ângulo de 60° não pode ser trissecção apenas utilizando esses instrumentos.

A impossibilidade da resolução com a régua e o compasso deste problema foi provada em 1837 pelo matemático francês Pierre Laurent Wantzel (1814 – 1848), apoiando-se nos resultados do matemático alemão Johann Carl Friedrich Gauss (1777 – 1855), publicados em 1801.

A duplicação do cubo foi mais um problema de geometria euclidiana que não possui solução por meio da régua e do compasso. O problema consiste em encontrar um método em que dada a aresta de um cubo obtê-lo através desse instrumentos, a aresta de outro cubo cujo volume seja o dobro do volume do cubo inicial.

As origens deste famoso problema estão relacionadas com uma lenda ligada a Péricles (cerca de 495 a.C. — 429 a.C.), um dos principais líderes de Atenas, que morreu vítima da epidemia que assolou parte da população daquela cidade-estado. Desesperados por essa enorme perda, os habitantes consultaram o oráculo de Apolo em Delos para saber como podiam combater a doença. Em resposta foi-lhes dito que deveriam duplicar o altar de Apolo, que possuía o formato de um cubo. Logo os ateus dobaram as dimensões do altar, ou seja, as arestas passaram a ter o dobro do comprimento inicial, mas isso não afastou a peste, pois o seu volume fora multiplicado por oito e não por dois.

Com essa lenda, este problema também ficou conhecido como problema de Delos ou problema de Atenas.

Para termos e soluções dos dois correntes questões, isto é, obtermos o dobro do volume do cubo inicial, o comprimento da aresta deste novo cubo deverá ser igual à aresta inicial multiplicada por ; ou seja, onde \(a \) é o comprimento da aresta do primeiro cubo. Consequentemente, o seu volume será , o dobro do volume do cubo original. É evidente que não conseguimos obter, com a régua e o compasso, o segmento e assim, o problema não tem solução por meio destes instrumentos.

Quase todo o caminho da geometria dos antigos gregos foi influenciado pelas tentativas de resolução destes problemas. Para as soluções obtidas neste período foram utilizadas outras curvas como, por exemplo, a trisséctica ou a quadrarte de Hipias, que servia tanto para trissectar um ângulo, bem como, para quadrar um círculo.

A régua e a circunferência, obtidas através do ângulo e do compasso, respetivamente, eram entendidas, segundo o filósofo grego Platão de Atenas (cerca de 427 a.C. — 347 a.C.), como curvas perfeitas e como tal deveriam ser suficientes para executar quaisquer construções. Tal vez fosse esse um dos motivos da busca, pelos gregos, de uma solução usando apenas esses instrumentos.

É certo que estes três problemas desafiam os geométricos, gregos, bem como, com o passar dos anos, as gerações de matemáticos.

*hmelo@ua.pt
Centro de Matemática Aplicada e Tecnologias de Informação Departamento de Matemática Universidade dos Açores