Evaluation of Solar Energy Potential and its Variability in the Azores

Fernanda Carvalho
Diamantino Henriques
Paulo Fialho
Elsa Vieira
Jorge Santos
Evaluation of Solar Energy Potential and its Variability in the Azores

- Instruments and stations
- Data processing
- Results
Instruments & Data Acquisition

- **Pyranometers** instruments are specially designed for regular and continuous measurement of global radiation between 0.3 \(\mu \text{m} \) and 3.0 \(\mu \text{m} \).

- IM network have installed Kipp & Zonen CM11 thermoelectric pyranometers ("high quality" - Guide to Meteorological Instruments and Methods of Observation, VI ed.).

- **AWS MILUS 500** (Vaisala):
 - Sampling Interval: < 30 seg
 - Integration Time: 10 min
 - Time Of Observation: TST
Stations

- Flores
- Corvo
- Horta
- Pico
- Graciosa
- A. do Heroísmo
- P. Delgada
- Nordeste
- S. Maria
Calibration & Data Processing & Archiving

- Much attention is being given to the calibration of the radiation sensors - ISO 9846:1993(E);
 Last calibration of sensors were done on Oct-Nov/2009.

- Measurements are carefully analysed applying Quality Control /Quality Assessment (QC/QA) procedures;

- Once the control procedures are completed, the final data are centralised in a database system.
Data processing for row and 10’ data:

- **[TSV]** contains the all information collected at all stations;
- Extract and set by time (10 minutes average) raw-data recorded:
- **[RAD]** station/monthly data files with 10’ data.

10’ data values control:

\[
\begin{align*}
\text{iflag} = 0 &: \text{(good)} \\
\text{iflag} = 1 &: > 0.9 \times x0 \text{ (bad)} \\
\text{iflag} = 2 &: 0.8 \times x0 = <x> 0.9 \times x0 \text{ (suspect)}
\end{align*}
\]

\(x0: \text{Extraterrestrial irradiance}\)
Data processing for hourly data (1):

- Building [*.hor] files:

 - To each hour H is assigned an integrated value between H-1 and H.
 - For example, the total value at 5:00 TST is obtained by integrating of the 4:10, 4:20,..., 4:50 and 5:00.

- Zero hourly values are considered wrong and set to missing (-1).
Data processing for hourly data (2):

- Building [*_.ho1*] files:

 Hourly data outside of the sunrise-sunset period are set to zero.

```c
  c
  if(za.gt.90..or.za.lt.-90.)then
    x(k)=0.
    else if(x(k).eq.0.)then
      x(k)=-1.
  endif
  c```
Pyrnometers network performance (2000-2009)

Flores (05010)
1998 - 2000

Flores (05010)
2006 - 2009
Horta (05060) 1998 - 2000

Horta (05060) 2006 - 2009

Pico (09220) 2006 - 2009

Graciosa (09120) 2006 - 2009
Flores - Global Radiation (10 minutes)

Relative deviation of measurements from model MESTRad
Results (I)
(from 1999-2000 data)

Hourly irradiation (kJ/m²)
### Results (II)
(from 1999-2000 data)

#### Daily global irradiation values tables (Wh/m²)

Daily Global Irradiation values (Wh/m²)
Average, maximum, minimum and number of years
Station ID: 501
Year range: 1999 - 2009

<table>
<thead>
<tr>
<th>Day</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1786.3</td>
<td>1906.1</td>
<td>3020.5</td>
<td>2860.5</td>
<td>3807.4</td>
<td>6717.3</td>
<td>6939.0</td>
<td>5956.2</td>
<td>4916.7</td>
<td>2976.5</td>
<td>2327.3</td>
<td>1698.6</td>
</tr>
<tr>
<td></td>
<td>2040.7</td>
<td>3581.7</td>
<td>4259.3</td>
<td>3696.8</td>
<td>4941.5</td>
<td>7419.3</td>
<td>8648.6</td>
<td>7561.7</td>
<td>6542.2</td>
<td>3120.7</td>
<td>3627.5</td>
<td>2781.9</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>02</td>
<td>1809.3</td>
<td>1845.2</td>
<td>2977.9</td>
<td>2355.5</td>
<td>5903.7</td>
<td>5073.7</td>
<td>6253.0</td>
<td>5496.7</td>
<td>4168.8</td>
<td>3607.4</td>
<td>1645.4</td>
<td>1682.4</td>
</tr>
<tr>
<td></td>
<td>2301.2</td>
<td>2839.5</td>
<td>3637.4</td>
<td>3478.3</td>
<td>6486.4</td>
<td>7232.4</td>
<td>8007.9</td>
<td>7743.8</td>
<td>6514.1</td>
<td>4654.0</td>
<td>3018.5</td>
<td>2041.9</td>
</tr>
<tr>
<td>1296.6</td>
<td>352.7</td>
<td>1393.1</td>
<td>602.3</td>
<td>4901.0</td>
<td>3546.6</td>
<td>3623.4</td>
<td>4022.1</td>
<td>2916.2</td>
<td>2770.1</td>
<td>331.2</td>
<td>1320.2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Results (II)
(from 1999-2000 data)

Daily global irradiation (kJ/m²)
Irradiação Global Diária (kJ/m²)
Valores médios (2000-2009)
Valores máximos (2000-2009)
MESTrad2009
Results (III)
(from 1999-2000 data)

Monthly Global Radiation Tables (Wh/m2)

Station: (085060) FAIAL ISL
Global Radiation G in WH.M-2 (WRR)
Latitude: 38 31 N   Longitude: 28 38 W   Altitude: 60 m

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>1865.1</td>
<td>2797.0</td>
<td>3712.3</td>
<td>4519.4</td>
<td>5970.2</td>
<td>6437.0</td>
<td>6130.6</td>
<td>4618.6</td>
<td>3090.1</td>
<td>2277.1</td>
<td>1771.3</td>
<td></td>
</tr>
<tr>
<td>GSTD</td>
<td>769.6</td>
<td>1403.0</td>
<td>1669.4</td>
<td>2101.8</td>
<td>2644.0</td>
<td>2697.4</td>
<td>3224.0</td>
<td>2747.0</td>
<td>2314.7</td>
<td>1386.8</td>
<td>1021.8</td>
<td></td>
</tr>
<tr>
<td>GMAX</td>
<td>3508.2</td>
<td>4870.8</td>
<td>5865.4</td>
<td>6778.9</td>
<td>9060.0</td>
<td>8627.1</td>
<td>8085.1</td>
<td>6756.0</td>
<td>5364.4</td>
<td>3619.5</td>
<td>2786.2</td>
<td></td>
</tr>
<tr>
<td>GMIN</td>
<td>450.3</td>
<td>913.0</td>
<td>913.2</td>
<td>1163.5</td>
<td>3792.9</td>
<td>2012.7</td>
<td>2987.6</td>
<td>3114.1</td>
<td>1744.9</td>
<td>692.0</td>
<td>890.7</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>G0</td>
<td>4585.0</td>
<td>5742.2</td>
<td>8058.3</td>
<td>9696.9</td>
<td>11148.0</td>
<td>11588.8</td>
<td>11192.8</td>
<td>10192.6</td>
<td>8657.8</td>
<td>6269.3</td>
<td>5092.5</td>
<td></td>
</tr>
<tr>
<td>G/G0</td>
<td>0.407</td>
<td>0.487</td>
<td>0.461</td>
<td>0.466</td>
<td>0.577</td>
<td>0.515</td>
<td>0.575</td>
<td>0.601</td>
<td>0.533</td>
<td>0.493</td>
<td>0.447</td>
<td>0.430</td>
</tr>
</tbody>
</table>
Results (III)
(from 1999-2000 data)

Diagrams of the mean annual course of global radiation (kWh/m²)
Diagrams of the mean annual course of global radiation (kWh/m²)
Results (IV)
(from 1999-2000 data)

Mean annual monthly number of days with daily radiation given thresholds (Wh/m²)

<table>
<thead>
<tr>
<th>WH M-2</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>200</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>400</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>600</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>800</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>1000</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>1200</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>1400</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>1600</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>1800</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>2000</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>2200</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>2400</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>2600</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>2800</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>3000</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>3200</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>3400</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
</tbody>
</table>
Thanks for your attention