SENSIVITY OF BACILLUS SUBTILIS TO WATER SOLUBLE ALKALOID EXTRACTS OF CHELIDONIUM MAJUS L. (PAPAVERACEA) ROOTS FROM AZORES

M. LEONOR PAVÃO & RUY E. PINTO

ARQUIPÉLAGO

Water soluble alkaloid (WSA) extracts from Chelidonium majus L. (great celandine) roots, growing on uncultivated ground in the Azores, were prepared. The WSA showed antibacterial properties towards Bacillus subtilis. The effect of WSA appeared to be 1/10 of tetracycline. For concentrations lower than 100 µg/disc, no reproducible sensitivity was observed. Chelidonine, protopine and allocryptopine had no action against Bacillus subtilis. Coptisine, which is reported as not exhibiting antibacterial activity, showed activity against Bacillus subtilis in a similar way as sanguinarine and berberine. Chelerythrine was the most active alkaloid (about 40-50% higher than sanguinarine). Sanguinarine and chelerythrine are generally accepted as the alkaloids responsible for the antibacterial properties of Chelidonium latex. Results suggest that, at least for the species existing in the Azores, berberine and coptisine also contribute to that biological activity.

Prepararam-se extractos de alcáloides solúveis em água de raízes de Chelidonium majus L. (celidónia), colhida em terrenos incultos nos Açores. Estes extractos revelaram possuir propriedades antibacterianas em relação a Bacillus subtilis. O efeito dos extractos pareceu ser dez vezes menor do que o da tetraciclina. Para concentrações dos extractos inferiores a 100 µg/disco não foi detectada uma clara sensibilidade da cultura. A quelidonina, a protopina e a alocriptopina não são activos contra Bacillus subtilis. A coptisina, que não é citada na bibliografia como possuindo actividade antibacteriana, revelou actuar sobre Bacillus subtilis de um modo semelhante ao apresentado pela sanguinarina e pela berberina. A queleritrina foi o alcáloide que revelou maior efeito sobre Bacillus subtilis, cerca de 40 a 50 % superior ao da sanguinarina. A sanguinarina e a queleritrina são os alcáloides geralmente considerados como os principais responsáveis pela actividade antibacteriana do látex da quelidónia. Sugere-se que esta responsabilidade seja também atribuída à berberina e à coptisina, pelo menos no que diz respeito à espécie da planta existente nos Açores.

Maria Leonor Pavão, Departamento de Ciências Tecnológicas e Desenvolvimento, Universidade dos Açores, R. Mãe de Deus, PT-9500 Ponta Delgada. Açores. Portugal. - Ruy E. Pinto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, R. Ernesto de Vasconcelos, Bloco C1, 5º Piso, PT-1700 Lisboa, Portugal.
INTRODUCTION

Chelidonium majus L. is a Papaveracea known for the pharmacological properties of its latex (Bodalsky & Rzadowska 1957; Kim et al. 1969; Baumman et al. 1971; Kery et al. 1987). These properties are mainly due to the alkaloid content of the plant (for a revision see Sequeira de Medeiros 1984). The total alkaloid extracts have antibacterial properties against pathogenic strains of Staphylococcus, Streptococcus, Klebsiella and Bordetella (Gheorghiu et al. 1970). It is generally assumed that the quaternary benzophenanthridine alkaloids chelerythrine and sanguinarine are responsible, to a great extent, for this biological activity of the Chelidonium extracts (Bodalski et al. 1957; Lenfeld et al. 1981; Gomez & Baum 1986; Popovici et al. 1986).

The purpose of the present study was to test the sensivity of Bacillus subtilis to water soluble alkaloid extracts from Chelidonium roots growing on uncultivated ground in the Azores. Results were obtained monthly for a one year growing cycle of the plant.

We also evaluated the antibacterial activity of the five major alkaloids shown previously to be present in the extracts: chelidonine, chelerythrine, sanguinarine, berberine, coptisine, protopine and allocryptopine (Pavao & Pinto 1995). For comparison, tetracycline, chloramphenicol and penicillin were used under the same conditions.

MATERIALS AND METHODS

Plant

Plants were harvested every 4 weeks, during a one year cycle, on uncultivated ground on the island of S. Miguel. Roots (3-4 kg) were separated from the aerial parts and dried at 50-60°C for 3 days. The dried materials from all the collected plants were combined and coarsely ground to a powder.

Chemicals and culture

All chemicals were of analytical grade. Berberine chloride (2H2O), chelidonine and sanguinarine were from Extrasynthèse®, 69000 Geenay, France. Chelerythrine, protopine, allocryptopine and coptisine were generous gifts of Professor Jira Slavik (Purkine University, Brno, Czech Rep.). The purity of the standard alkaloids was verified by TLC, using 3 solvent systems (Pavao & Pinto 1995, this journal).

Triptone (Oxoid®), Plate Count Agar (Oxoid®) and Bacillus subtilis from Bactisubtil (Lepetit®) were used in microbiological tests. According to the laboratory description, each capsule of Bactisubtil contains a minimum of 10⁹ cells of a pure, centrifuged and dried culture of Bacillus subtilis, strain IP 5832.

Susceptibility Test Discs (Oxoid®), containing 10 µg of tetracycline (TE₁₀), 10 µg of chloramphenicol (C₃₀) and 2 UI of penicillin G (P₂) were used.

Water soluble alkaloid (WSA) extracts

Determination of total alkaloids from roots was carried out according to Kustrak et al. (1982), as described by Pavao & Pinto (1995). TLC using 3 solvent systems, followed by fluorescence densitometry were carried out to separate, identify and quantify the five major alkaloids present in WSA: chelidonine, chelerythrine, sanguinarine, berberine and coptisine. Protopine and allocryptopine were also identified in all the extracts, but they were not evaluated. TLC revealed the presence of other alkaloid fractions, which were not identified (Pavao & Pinto 1995).

Testing material

WSA, prepared as previously described, were immediately used or, alternatively, dissolved in distilled water in suitable concentration and stored in plastic bags at −20°C. When necessary,
water was removed by evaporation. Methanolic solutions were prepared from each WSA (about 1 mg WSA ml⁻¹) and from each standard alkaloid (5 mg·ml⁻¹).

Paper discs

Paper discs with a diameter of 6 mm were cut out from Whatman no.3 filter paper and sterilized at 180°C, during 30 min, in a Petri dish, where they were kept until required.

On each disc, successive portions of 50 μl of methanolic solutions of the testing material were applied, until the desired concentration was obtained (1 mg of standard alkaloid/disc and 0.5 mg WSA/disc). After each application, the solvent was evaporated using a cold air blow.

Antibacterial testing

The content of one capsule of Bactisubtil was poured into 10 ml of a 15 gl⁻¹ triptone water solution and incubated at 37°C during 24h. For disc testing, 10 ml of the agar were used in a 100 mm diameter glass Petri dish. The surface was seeded with 0.5 ml of the broth culture and the discs were immediately applied. In all cases, paper discs, having pure solvent applied and evaporated as described above, were used as control. The activity of the testing materials was compared to the effect of TE₁₀, C₃₀ and P₂. The antibacterial effect was estimated on the basis of the inhibition zone-diameter, after incubation at 37°C, during 24 h.

Also, we determined the minimum concentration of one of the considered extracts (containing 43 μg of chelerythrine, 67 μg of sanguinarine, 24 μg of berberine and 22 μg of coptisine, per milligram of WSA) at which no development of culture around the paper disc was observed. For this, methanolic solutions of the extract with suitable concentrations, were prepared and applied as previously described, so to obtain discs containing amounts of 50 to 550 μg.

RESULTS AND DISCUSSION

Chelidonine, protopine and allocryptopine did not show any effect upon *Bacillus subtilis* (Table 1). Coptisine was active against *Bacillus subtilis* in a similar way as sanguinarine and berberine (Table 1). The effect was equivalent to the activity of 30 μg of chloramphenicol. Coptisine had not been previously reported as an antibacterial product, but has other pharmacological properties. Namely, it is one of the active anti-inflammatory constituents of *Coptis japonica* Makino (OTSUKA et al. 1981) and it was identified as one of the active principles of an aqueous extract of *Coptidis* rhizoma having an inhibitory effect on the bacterial collagenase from *Clostridium histolyticum* (TANAKA et al. 1991). Also, HATTORI et al. (1992) observed the antinephritic effect of berberine and coptisine in rats with original-type Anti-GBM nephritis.

Chelerythrine was the most active alkaloid against *Bacillus subtilis* and its activity was about 40-50% higher than that of sanguinarine.

<table>
<thead>
<tr>
<th>Alkaloid</th>
<th>Inhibition zone diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocryptopine</td>
<td>0</td>
</tr>
<tr>
<td>Protopine</td>
<td>0</td>
</tr>
<tr>
<td>Berberine</td>
<td>9±0.5</td>
</tr>
<tr>
<td>Coptisine</td>
<td>8±0.6</td>
</tr>
<tr>
<td>Chelidonine</td>
<td>0</td>
</tr>
<tr>
<td>Chelerythrine</td>
<td>12±0.6</td>
</tr>
<tr>
<td>Sanguinarine</td>
<td>9±0.5</td>
</tr>
</tbody>
</table>

The minimum active concentration of WSA is approximately 80 μg, since a concentration of 100 μg still originated a clear inhibition zone,
which was not observed for 50 µg. Also, the effect of 100 µg of WSA appeared to be similar to that of 10 µg of tetracycline.

All the WSA showed a positive effect against *Bacillus subtilis* (Table 2), which reveals the presence of antibacterial alkaloids in the latex of the plant, throughout the growing season. However, maximum values were observed for winter extracts (December and January), when chelerythrine and sanguinarine concentrations (about 65µg/mg WSA) were higher than in the other months (PAVÃO & PINTO 1995).

![Image](https://example.com/image.png)

Table 2

Antibacterial activity of water soluble alkaloid extracts from *Chelidonium majus* L. roots, along one year cycle.

<table>
<thead>
<tr>
<th>WSA Alkaloid concentration (µg/mg WSA)</th>
<th>Inhibition zone diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>Chr</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>Feb.</td>
<td>35.5</td>
</tr>
<tr>
<td>Mar.</td>
<td>39.9</td>
</tr>
<tr>
<td>Apr.</td>
<td>22.1</td>
</tr>
<tr>
<td>May</td>
<td>29.2</td>
</tr>
<tr>
<td>June</td>
<td>19.3</td>
</tr>
<tr>
<td>July</td>
<td>27.4</td>
</tr>
<tr>
<td>Aug.</td>
<td>25.2</td>
</tr>
<tr>
<td>Sep.</td>
<td>21.6</td>
</tr>
<tr>
<td>Oct.</td>
<td>30.4</td>
</tr>
<tr>
<td>Nov.</td>
<td>25.9</td>
</tr>
<tr>
<td>Dec.</td>
<td>60.0</td>
</tr>
<tr>
<td>Jan.</td>
<td>42.9</td>
</tr>
</tbody>
</table>

Month=month of roots harvesting for preparation of extracts; Chr=Chelerythrine; S=Sanguinarine; B=Berberine; C=Coptisine; WSA=Water soluble alkaloid extracts; P2=Penicillin 2U; C30=Chloramphenicol 30µg; TE10=Tetracycline 10µg; Values of Alkaloid conc. (see PAVÃO & PINTO 1995); Values of WSA activity represent mean of 3 samples (10<error<15%); Values of P2, C30 and TE10 represent mean of 3 samples (error² 5%).

Results also suggest that coptisine may account for the observed activity of WSA. Namely, in the extract obtained from the roots harvested in May (Table 2), coptisine concentration was about twice as high as in December (13 µg/mg WSA), chelerythrine was about 50% (29 µg/mg WSA) and sanguinarine was 45% lower (38 µg/mg WSA); berberine was approximately at the same concentration in both cases (25 µg/mg WSA).

A simple additive effect of the individual alkaloid actions can not be considered, but a synergistic effect could partially explain the results. However, WSA have a relatively large number of unquantified alkaloids (about 1/2 of total weight of WSA), whose action on *Bacillus subtilis* is also unknown, except for protopine and allocryptopine (Table 1). Also, the presence of a great amount of compounds on a disc may contribute to enhance the diffusion area of the material on culture. Thus, it is not possible to assess a simple relationship between the activity of an isolated alkaloid and its contribution, as a component of the extract, to the total effect of WSA.

Sanguinarine and chelerythrine are generally accepted as the main alkaloids responsible for the antibacterial properties of *Chelidonium* latex. The present study suggests that, at least for the *Chelidonium* species existing in the Azores, berberine and coptisine also contribute to that biological activity.

As *Bacillus subtilis* exists in mammalian intestinal flora, its sensivity to *Chelidonium majus* alkaloid extracts and individual components, when used in oral treatments, should be considered in further studies.

ACKNOWLEDGEMENTS

The authors are most grateful to Prof. Jirà Slavík (J.Ev.Purkíně University, Brno, Czech Rep.) for the generous gifts of chelerythrine, protopine, allocryptopine and coptisine. Thanks are due to Dr. Alan Bolten for revising the English language.

REFERENCES

Accepted 30 August 1995.