7th ASIA-PACIFIC CONFERENCE ON ALGAL BIOTECHNOLOGY

December 1–4, 2009, New Delhi, India

Algal Biotechnology in the Asia-Pacific Region:
New Challenges and Opportunities for the 21st Century
Under the Auspices of Asia-Pacific Society for Applied Phycology

Jointly Organized
by
DEPARTMENT OF BOTANY, UNIVERSITY OF DELHI, DELHI, INDIA
INDIAN PHYCOLOGICAL SOCIETY, NEW DELHI, INDIA

ABSTRACTS

Edited by
DINABANDHU SAHOO

Notes: The Abstracts have been published as submitted by the participants. However, certain modifications have been made for the sake of format and brevity.
CHIEF PATRON
Deepak Pental : Vice Chancellor, University of Delhi, Delhi, India

PATRONS
S K Tandon : Pro Vice Chancellor, University of Delhi, Delhi, India
S Z Qasim : Former Member, Planning Commission, Govt. of India, India

INTERNATIONAL ADVISORY COMMITTEE
Song Qin, Chairman, China
Wong Ching Lee, Malaysia
Kazuyuki Miyakawa, Japan
Marco Nemesio Montano, Philippines
Oh Hee Mock, Korea
Phang Siew Moi, Malaysia
Sung Min Boo, Korea
Avigad Voshak, Israel

Dinabandhu Sahoo, Co-Chairman, India
David Lewis, Australia
Lee Yuan Kun, Singapore
Masahiro Notoyo, Japan
Yuwadee Peerapornpisal, Thailand
Charles Yarish, USA
Pemin He, China
Michael Borowitzka, Australia

ORGANISING COMMITTEE
I Usha Rao, Chairperson & HOD Botany
Dinabandhu Sahoo, Convenor & Secretary, IPS
P L Uniyal, Organizing Secretary

B D Kaushik, President, IPS
N Anand, Vice-President, IPS
R Prasanna, Treasurer, IPS

Members
Abhirm Seth, India
Ajay Parida, India
A K Pandey, India
Amar Kumar, India
Anil Chatterji, India
Anjuli Sood, India
Arun Jagannath, India
B B Chaugeule, India
B C Tripathy, India
B R Chaudhary, India
D P Semwal, India
G.H. Kim, Korea
G P Nayak, India
G. Subramanian, India
Hong-Nong Chou, Taiwan
IK Kyo Chung, Korea
Ira Levine, USA
Jin A Lee, Korea
K O Isaac, India
K S Rao, India
L Kannan, India
Manu Agarwal, India
P K Ghosh, India
R Geeta, India
R B Srivastav, India
R C Mohanty, India
R Rengasamy, India
Rajendra Gupta, India
Rajesh Tandon, India
Renu Deswal, India
Rup Lal, India
S B Padhi, India
S C Bhatia, India
S K Sawkney, India
S Mazumdar-Leighton, India
S N Nayak, India
Sebastian Thomas, India
Shailendra Goel, India
Suman Lakhanpal, India
V P Singh, India
V Krishnamurthy, India
Veena Agrawal, India
Vinita Sharma, India
Vishnu Bhatt, India
Vinod Nehemia, India

SECRETARIAT
Pooja Baweja
Elangbam Geetanjali
Salam Sonia Devi
Nitin Pipralia
Priyanka Verma

Dinabandhu Sahoo
Convenor, 7th Asia-Pacific Conference on Algal Biotechnology-2009
Marine Biotechnology and Laboratory, Department of Botany, University of Delhi, Delhi–110007, India
Phone: 91-11–27666792 (Lab.) Fax: 91-11–27666792

www.algalbusiness.com
Use of Dinoflagellates as a Biorefinery for Interested Biomolecules

C. Fuentes-Grünwald1,2, E. García3, L. del Río3, N. Sampedro3, S. Rossi1 and J. Camp2

1 Autonomous University of Barcelona, Institute of Science and Environmental Technology, Barcelona, Spain
2 Sea Science Institute, Council of Scientific Research CSIC, Spain

Today one of the major challenges in biotechnology is to find the best feedstock for producing different types of biomolecules for pharmaceutical, cosmetic industries, biofuels or medical use. For centuries the human race has utilized terrestrial plant as an alternative in the production of natural product, but now, microalgae seems to be the major feedstock for the production of the secondary metabolites. We know the use of microalgae for producing pigments (Haematococcus pluvialis), for proteins (Spirogyra maxima) aquaculture use (Dunaliella salina, Tetraselmis suecica) or to biodiesel production (Chlorella protothecoides, Nannochloropsis oculata). Dinoflagellates are a group of microalgae knower for extensive proliferation in coastal eutrophized areas. These algae have the capacity to enhanced lipids in their life cycle, specially triacylglycerides (TAG) in the stationary phase of culture, TAG are the best feedstock for transesterification to produce a second generation biodiesel, some strains (Karlodinium veneficum, Alexandrium andersonii, and the raphidophyte Heterosigma akashiwo) show good parameters of growth, yield of lipids and short period of culture and seems to be an environmental friendly alternative in the production of this biofuels.

Also, is possible to cultivate dinoflagellate under different strategies or culture system (open ponds, air lift bubble column, photobioreactor, Flat panel, etc). Due to their physiological characteristic we can found interested secondary metabolites as a Eicosapentanoic (EPA), Docosahexanoic DHA, and Arachidonic acids, also some antioxidants as a lutein, and even toxins as a Paralytic, Diarrethic and Amnesic shellfish poison. All this metabolites have enormous potential in many fields of science, and some of these molecules are really expensive reaching thousands of dollars per a few milligrams (13C stable isotopes). The main goal of this study is to obtain high value molecules from dinoflagellates cultures, also show how we modified their lipids profiles using abiotics parameters, and identified and quantify the production of TAG for biodiesel purposes.

Protein and Fiber of Selected Azorean Seaweeds

Patarra RF1, Paiva L2, Neto AF3, Lima E2 and Baptista J2

1 Secção Biologia Marinha, Laboratório Ficologia, CIRN, Departamento Biologia, Universidade dos Açores, 9501-801 Ponta Delgada, S. Miguel, Açores, Portugal
2 Departamento Ciências Tecnológicas e Desenvolvimento (DCTD), Universidade dos Açores, 9501-801 Ponta Delgada, S. Miguel, Açores, Portugal
3 CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Rua dos Bragas 289, 4050-123 Porto, Portugal

Seaweeds are traditionally used in human and animal nutrition. Their protein and fiber contents have been studied widely and differ according to the species and seasonal conditions. In the archipelago of the Azores, the consumption of seaweed is widespread and accepted as a common practice in some islands. In addition to their value for human nutrition, the seaweeds may also contribute to a healthy human life in such areas as: weight control and in some medical applications (anti-blood cholesterol, antioxidant and antitumor activities, etc).
This work is aimed at providing additional information on the protein (P) and fiber (F) contents of locally consumed species, to promote a regional product that potentially can be profitable from the biotechnology and commercial perspective, and also bring benefits to Public Health, particularly, taking into account the low level of marine pollution in the Azores archipelago. P content of eight seaweeds was determined using the Kjeldahl method (AOAC 945.18). Seaweeds belonging to Phaeophyta (Cystoseira abies-marina and Fucus spiralis), Chlorophyta (Ulva compressa) and Rhodophyta (Porphyra sp., Osmundea pinnatifida, Pterocladiella capillacea, Sphaerococcus coronopifolius and Gelidium microdon) were collected during January/February 2007, April 2008 and June 2009, from the littoral of the Azores archipelago. The P content ranged between 6.82±0.18% and 26.62±0.69% of dry weight, in Cystoseira abies-marina and Ulva compressa, respectively. F content will be performed using the Weende method.

Screening of Antibacterial Activities of Identified Compounds from Red Seaweed of Eucheuma serra

Jana Tjahjana Anggadireja

The Agency for the Assessment and Application of Technology, Jl. MH Thamrin 8, Jakarta 10340, Indonesia. [jana@ceo.bppt.go.id]

Acetone extracts of Eucheuma serra (red seaweed species) were fractionated and isolated using Column Chromatography and Bioautographic Thin Layer Chromatography (TLC) methods, and the compounds identified using GC-MS. Mass spectra analysis of Eucheuma serra fractions yielded 24 compounds, consisted of 7 of fatty acids, 7 of steroids, 3 of hydrocarbons, 4 of alcohols, and 3 of aldehydes. All isolated compounds were tested for their antibacterial activities by the agar diffusion method against the Gram-positive bacteria Staphylococcus aureus, Bacillus subtilis and Streptococcus faecalis, and the Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa and Salmonella typhimurium. Eight compounds (3 fatty acids, 3 steroids, and 2 aldehyds) from Eucheuma serra showed activity against Gram-positive bacteria, especially Bacillus subtilis and only one compound showed activity against Gram-negative bacteria Escherichia coli. Four compounds showed activity against Staphylococcus aureus, and three compounds showed activity against Streptococcus faecalis. All compounds were not active against Pseudomonas aeruginosa and Salmonella typhimurium bacteria. This study indicated that there is indeed a diversity both in types and in molecular structures of the antibacterial substances.
PROTEIN AND FIBER OF SELECTED AZOREAN SEAWEEDS

Patarra RF^a, Paiva L^b, Neto Al^ac, Lima E^b, Baptista J^b

^a Secção Biologia Marinha, Laboratório Ficologia, CIRN, Departamento Biologia, Universidade dos Açores, Portugal
^b Departamento Ciências Tecnológicas e Desenvolvimento (DCTD), Universidade dos Açores, Portugal
^c CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Rua dos Bragas 289, 4050-123 Porto, Portugal