Caracterização de comunidades planctónicas no banco submarino Condor (Sudoeste da Ilha do Faial, Açores): Associação dos principais padrões de distribuição com factores ambientais subjacentes

Mariana Santinho Vieira dos Santos

Orientadora: Prof. Doutora Ana Martins
Co-orientador: Doutor Paolo Lambardi

Dissertação para obtenção do grau de Mestre em:
Estudos Integrados dos Oceanos

HORTA
-2011-
“A ciência humana de maneira nenhuma nega a existência de Deus. Quando considero quantas e quão maravilhosas coisas o homem compreende, pesquisa e consegue realizar, então reconheço claramente que o espírito humano é obra de Deus, e a mais notável”.

Galileu Galilei
Índice

ÍNDICE DE FIGURAS ... V

ÍNDICE DE TABELAS ... VII

LISTA DE ABREVIATURAS ... VIII

AGRADECIMENTOS ... IX

RESUMO ... XI

ABSTRACT .. XII

1. INTRODUÇÃO .. 1

2. ENQUADRAMENTO ... 2

2.1. ARquipélago dos Açores e Região de estudo ... 2

2.2. fitoplâncton ... 3

2.3. Zooplâncton ... 6

3. MATERIAL E MÉTODOS .. 7

3.1. Descrição da Região em estudo .. 7

3.2. Dados de Cruzeiros, estações e amostras .. 8

3.3. Processamento a bordo e em laboratório ... 10

 3.3.1. fitopigmentos ... 10

 3.3.2. fitoplâncton .. 11

 3.3.3. Zooplâncton ... 12

 3.3.4. Temperatura e Salinidade ... 14

 3.3.5. Análise Estatística dos Dados .. 14

4. RESULTADOS ... 16

4.1 Caracterização Física e Biológica da coluna de água ... 16

 4.1.1. Variação Espacial ... 16

 4.1.1.1 Verão ... 16

 4.1.1.2 Outono ... 18

 4.1.1.3 Inverno/Primavera ... 19

 4.1.2. Variação Sazonal .. 22

 4.1.2.1 Banco Submarino Condor .. 22

 4.1.2.2 Canal Faial - Pico ... 24

 4.2.1. Variação Sazonal de fitoplâncton vs Zooplâncton .. 26

 4.2.2. fitoplâncton .. 27

 4.2.2.1 Variação Espacial ... 27

 4.2.2.2 Variação Sazonal e Local ... 30

 4.2.2.3. Diversidade taxonómica e Abundância do fitoplâncton ... 34

 4.2.2.3.1 Sazonal .. 34

 4.2.2.3.2. Em Profundidade .. 40
4.2.3. Local	43
4.2.3. Zooplâncton	45
4.2.3.1. Biomassa do zooplâncton	45
4.2.3.2. Variação Sazonal	48
4.2.3.2. Diversidade taxonômica e Abundância do zooplâncton	50
4.2.3.2.1. Variação Sazonal	50
4.2.3.2.2. Variação Diurna/Nocturna	53
4.2.3.2.3. Variação Local	57

5. DISCUSSÃO | 59 |
| 5.1. CARACTERIZAÇÃO FÍSICA E BIOLÓGICA DA COLUNA DE ÁGUA | 59 |
| 5.2. CARACTERIZAÇÃO DAS COMUNIDADES PLANCTÔNICAS | 62 |

6. CONSIDERAÇÕES FINAIS | 70 |

7. REFERÊNCIAS BIBLIOGRÁFICAS | 72 |

ANEXOS | 59 |
Índice de Figuras

Figura 1 – Localização do banco submarino Condor no grupo central do Arquipélago dos Açores (em cima) e uma perspectiva pormenorizada do banco (em baixo) (créditos: F. Tempera ©ImagDOP). ________________3

Figura 2 – Projecto CONDOR: Localização de estações biológicas amostradas no banco Condor, no canal Faial-Pico e em mar aberto. A azul, assinalam-se as estações em que se recolheram amostras de fitoplâncton e em que se realizaram perfis de CTD. A vermelho indicam-se as estações em que se analisou a concentração de clorofila a e a preto especificam-se as estações em que se recolheram amostras de zooplâncton. No mapa está representada a batimetria do banco e áreas adjacentes. ______________________8

Figura 3 – Estações de amostragem realizadas no âmbito do projecto CONDOR. As estações em que se recolheram águas para o estudo de fitoplâncton e em que se efectuaram perfis de CTD estão assinaladas a vermelho. As estações assinaladas a preto indicam os locais onde se fizeram recolhas de amostras de zooplâncton. __10

Figura 4 – Perfis verticais dos factores físico/químicos (A – Temperatura; B – Salinidade; E – Oxigénio e F – Turbidez) e biológicos (C – Fluorescência e D – Concentração de Clorofila a) obtidos durante o cruzeiro “CONDOR-OCE-2009-V01” realizado no Verão de 2009. A posição de cada estação no mapa é indicada pelos códigos “A, B, C, D, E, F e G” (cf. Fig. 3). ___________________________17

Figura 5 – Perfis verticais dos factores físicos/químicos (A – Temperatura; B – Salinidade; E – Oxigénio e F – Turbidez) e biológicos (C – Fluorescência e D – Concentração de Clorofila a) obtidos durante o cruzeiro “CONDOR-OCE-2009-001” realizado no Outono de 2009. A posição de cada estação no mapa é indicada pelos códigos “A, B, C, D, E, F, G e H” (cf. Fig. 3). ____________________________19

Figura 6 – Perfis verticais dos factores físico/químicos (A – Temperatura; B – Salinidade; E – Oxigénio e F – Turbidez) e biológicos (C – Fluorescência e D – Concentração de Clorofila a) obtidos durante o cruzeiro “CONDOR-OCE-2010-P01” realizado no período Inverno/Primavera de 2010. A posição de cada estação no mapa é indicada pelos códigos “A, B, C, D, E, F, G e H” (cf. Fig. 3). ____________________________21

Figura 7 - Representação da variação sazonal dos factores físico/químicos (A e B – Temperatura; C e D – Salinidade; G e H – Oxigénio e I e J – Turbidez) e biológicos (E – Fluorescência e F – Concentração de Clorofila a) em profundidade na coluna de água no banco submarino Condor durante os meses de Verão 2009 (“V_09”), Outono de 2009 (“O_09”) e Inverno/Primavera de 2010 (“I/P_10”). __________________________24

Figura 8 - Representação da variação sazonal dos factores físico/químicos (A – Temperatura; B – Salinidade; E – Oxigénio e F – Turbidez) e biológicos (C – Fluorescência e D – Concentração de Clorofila a) em profundidade na coluna de água no canal Faial – Pico, durante os meses de Verão 2009 (“V_09”), Outono de 2009 (“O_09”) e Inverno/Primavera de 2010 (“I/P_10”). __25

Figura 10 – Representação dos perfis de diatomáceas (em A), de dinoflagelados (em B) e de coccolitóforos (em C) em profundidade. Os gráficos de cima correspondem à estação do Verão de 2009 (“V_09”), os do meio ao Outono de 2009 (“O_09”) e os de baixo ao Inverno/Primavera de 2010 (“I/P_10”). Para localizar as estações A a H no mapa cf. Fig. 3.

Figura 11 – Representação dos três principais grupos de fitoplâncton em função da profundidade nas zonas em estudo (A – Diatomáceas; B – Dinoflagelados e C – Coccolitóforos). As linhas a cheio representam a média das estações dentro da área do Condor e as linhas a tracejado indicam a estação do canal entre ilhas.

Figura 12 – Representação do escalonamento multidimensional (MDS) baseada na similaridade Bray-Curtis relativamente à composição da comunidade fitoplanctónica nas diferentes épocas do ano (A), locais de amostragem (B) e tendo em conta a direcção das estações comparativamente ao topo do banco submarino (C). Neste último caso os triângulos azuis (C) representam o topo do banco, os círculos a cor-de-rosa (N) a direcção Norte, os quadrados vermelhos (SO) a direcção Sudoeste, os círculos amarelos (O) a direcção Oeste, os triângulos verdes (E) a direcção Este e as estrelas a negro (NE) a direcção Nordeste.

Figura 13 – Representação em A dos perfis de diversidade por rarefação presentes em cada profundidade para cada época de estudo (Verão de 2009 - “V_09”; Outono de 2009 - “O_09” e Inverno/Primavera de 2010 - “I/P_10”). Em B, C e D estão representados respectivamente, os valores de fluorescência, da concentração de Chl a e de oxigénio (a tracejado) em função da referida diversidade em profundidade.

Figura 14 – Representação das curvas de dominância para cada estação do ano (Verão de 2009 - “V_09”, Outono de 2009 - “O_09” e Inverno/Primavera de 2010 - “I/P_10) em função de um ranking de espécies.

Figura 15 – (A) Representação da percentagem dos organismos mais abundantes de fitoplâncton no Condor, assim como dos menos abundantes (B) no Verão de 2009 - “V_09”, (C) Outono de 2009 - “O_09” e (D) Inverno/Primavera de 2010 - “I/P_10”.

Figura 16 – (A) Representação da percentagem dos organismos mais abundantes de fitoplâncton no canal Faial - Pico, assim como dos menos abundantes (B) no Verão de 2009 - “V_09”, (C) Outono de 2009 - “O_09” e (D) Inverno/Primavera de 2010 - “I/P_10”.

Figura 17 – Representação da variação da abundância de fitoplâncton aos vários níveis de profundidade durante as três estações do ano em estudo (Verão de 2009 - “V_09”, Outono de 2009 - “O_09” e Inverno/Primavera de 2010 - “I/P_10”). A abundância (célula.L^{-1}) é representada pelo diâmetro dos círculos, numa escala linear.

Figura 18 - Representação das curvas de dominância para cada nível de profundidade em estudo (D5, D25, D50, D75, D100 e D150 correspondendo a 5, 25, 50, 75, 100 e 150 m de profundidade, respectivamente) em função de um ranking de espécies.

Figura 19 – Representação das espécies mais abundantes de fitoplâncton nos vários níveis de profundidade no banco submarino Condor (A) e no canal Faial – Pico (B).

Figura 20 – Representação em ArcMap da abundância de fitoplâncton em cada local em estudo no (A) Verão de 2009, (B) Outono de 2009 e (C) Inverno/Primavera de 2010. (D) Representação das abundâncias médias anuais. Os números individuais dentro das caixas cinzentas correspondem ao número de profundidades utilizadas para a média de cada estação e os números (em A, B e C) e letras (em D) a negrito correspondem à identificação de cada estação.

Figura 21 – Representação em ArcMap da concentração da biomassa de zooplâncton em peso seco interpolada para a região do Condor e áreas circundantes. Os gráficos A, C, E e G representam períodos diurnos em,
respectivamente, Março, Junho, Agosto e Novembro de 2009. Os gráficos B, D, F e H representam períodos nocturnos para os mesmos meses do ano.

Figura 22 - Representação do escalonamento multidimensional (MDS) baseada nas similaridades de Bray-Curtis relativamente à composição da comunidade zooplanctónica nas diferentes épocas do ano e para a região em estudo.

Figura 25 - (A) Representação da percentagem dos organismos mais abundantes de zooplâncton no Condor, assim como dos menos abundantes (B) na Primavera_Março de 2009 - “Mar_09”; (C) Verão_Junho de 2009 - “Jun_09”; (D) Verão_Agosto de 2009 – “Ago_09” e (E) Outono_Novembro de 2009 - “Nov_09”.

Figura 27 - Representação em ArcMap da abundância de zooplâncton em cada local em estudo em (A) Março, (B) Junho, (C) Agosto e (D) Novembro de 2009. Os códigos a negrito correspondem à identificação de cada local de estudo.

Índice de Tabelas

Tabela I – Tabela sumário do número de estações de amostragem e respectivo número total de amostras contabilizado neste estudo.

Tabela II – Resultados obtidos para o teste global e para o teste de comparação entre os pares da Análise de Similaridade (ANOSIM), com valores de estatística R (baseada nos ranks de similaridade) e níveis de significância para os factores “Época do Ano”, “Local” e “Direcção”. A medida comparativa do grau de separação das amostras está representada por R.

Tabela III - Resultados obtidos para o teste global e para o teste de comparação entre os pares da Análise de Similaridade (ANOSIM), com valores de estatística R (baseada nos ranks de similaridades) e níveis de significância para o factor “Época do Ano”.
Lista de Abreviaturas

POC - Carbono Orgânico Particulado
Chl a – Clorofila a
DCM - Profundidade de Clorofila Máxima ou *Deep Chlorophyll Maximum*
CTD - Conductividade – Temperatura – Profundidade
DW - Peso Seco ou *Dry Weight*
DV - Volume deslocado ou *Displacement Volume*
ANOSIM – Análise de Similaridade
MDS – Escalonamento Multidimensional
V_09 – Verão de 2009
O_09 - Outono de 2009
I/P_10 – Inverno/Primavera de 2010
P_Mar09 – Primavera_Março de 2009
V_Junh09 – Verão_Junho de 2009
V_Ago09 – Verão_Agosto de 2009
O_Nov09 – Outono_Novembro de 2009
H0 – Hipótese Nula
Agradecimentos

A realização desta tese de mestrado não teria sido de todo possível sem a participação de todas as pessoas abaixo mencionadas, e portanto, desde já aqui fica um Obrigado a Todos!

Antes de mais quero agradecer à Prof. Doutora Ana Martins por ter aceitado ser minha orientadora neste trabalho e ao Doutor Paolo Lambardi pela sua co-orientação. Ambos permitiram que este objectivo fosse cumprido, apoiando-me e auxiliando nos momentos de dúvidas e dificuldades. Agradeço aos dois pelas várias críticas construtivas que contribuíram para este trabalho. Obrigada Paolo pela tão necessária ajuda em ArcMap!

Agradeço ao Projecto CONDOR-PT0040 (“Observatório para o Estudo de Longo Prazo e Monitorização dos Ecossistemas de Montes Submarinos nos Açores”) pelo auxílio financeiro que permitiu a recolha de amostras e a compra de material para a sua análise.

À tripulação do N/I “Arquipélago” que permitiu que a recolha das amostras utilizadas neste trabalho fosse realizada com êxito.

Agradeço também às pessoas que por detrás da organização e logística dos cruzeiros de recolha de zooplâncton contribuíram para a realização deste estudo, em especial o Doutor Eduardo Isidro e a equipa dos cetáceos.

Ao IPIMAR por me ter acolhido com carinho no mês de Janeiro de 2010 e ter permitido a minha formação na identificação de plâncton. Obrigada às Doutoras Teresa Moita, Antonina dos Santos e Isabel Meneses. Sem elas garantidamente que este trabalho não teria sido possível.

Um especial obrigado ao Doutor Gui Menezes que, não tendo nenhuma obrigação para comigo, sempre se mostrou disponível para me auxiliar no tratamento estatístico dos resultados.

O trabalho laboratorial nunca teria sido possível sem a ajuda da Dr.ª Ana Mendonça, do Dr. Humberto Lopes e do Técnico de Laboratório Luís Pires. Obrigada ao Doutor Raúl Bettencourt por me permitir que utilizasse o microscópio de inversão durante tanto tempo.

Também devo um especial agradecimento à minha colega Vanda Carmo por toda a sua ajuda na parte laboratorial de zooplâncton e por me ter cedido as suas magníficas fotos para eu pôr na minha tese, já que os seus dotes fotográficos são substancialmente melhores que os meus.
Obrigada à Drª Sandra Sequeira pela ajuda nos dados de CTD e tratamento de imagens, à Drª Ana Filipa Silva pela análise de nutrientes e à Drª Clara Loureiro pelo auxílio na análise de clorofílas. Um grande obrigado aos Técnicos de Instrumentação Oceanográfica, Alexandre Medeiros e Sérgio Gomes, pelo apoio técnico prestado e pelos momentos de distração na Oceanografia quando a cabeça começava a bloquear. Sem deixar de lembrar a importância das minhas companheiras do MEIO pelo apoio mútuo ao longo do mestrado. Obrigada Raquel por partilhares momentos bons e de desespero comigo no nosso refúgio de trabalho.

Também gostaria de agradecer todo o apoio e gentileza demonstrada pelo pessoal administrativo do DOP/UAç durante o decorrer deste trabalho. Os computadores e infraestruturas utilizados foram providenciados pelo DOP/UAç e IMAR.

Aos meus amigos do melhor curso de Biologia Marinha (BMP), que superando as milhas náuticas de distância estiveram sempre presentes e me deram grande apoio, especialmente na minha fase de adaptação ao ambiente açoriano. Obrigada Rosana, Ricardo (Esbro), Cátia, Joana Dias (Jet) e Joana Campos (Pussy) por serem tão importantes na minha vida …

Martinha e Carlota … o que vos devo não pode ser escrito em poucas palavras, por isso deixo apenas um OBRIGADO minhas lindas.

Às minhas colegas de casa especiais ao longo destes 5 anos: Andreia Vieira, Vera Vilela, Daniela Cortegano e Andreia Ovelheiro (as minhas meninas da República das Bananas – Gambelas); Cátia Silva (pelas noites de cinema, momentos de alegria, confidências e muita maluqueira), Vanda Carmo, Ana Filipa Carvalho, Carla Nunes e Mónica Inácio. Sem esquecer também, e muito especial, o Fraga, que considero um bom amigo e que tem sido muito importante em todas as fases que passei no Faial … Obrigada por todo o apoio que sempre me deste nos bons e, principalmente, nos maus momentos!

E, para o fim, sempre as pessoas mais importantes … a minha Família!!! Obrigada mãe e pai por serem os meus pilares, por me ajudarem a levantar sempre que estou a cair. Obrigada por me terem proporcionado a hipótese da realização de mais uma etapa. Aos meus grandes manos e cunhadinhos, devo também um grande obrigado. Sem a participação constante de toda a minha família tudo teria sido mais difícil … o que tenho devo a vós! E como não podia deixar de ser, sem a participação do Alexandre, a minha motivação para trabalhar não teria sido tão grande. Obrigada por teres aparecido, por me apoiares, por me dizeres quando estou errada, pelo teu carinho e atenção e por me fazeres rir quando tudo parece tão difícil …

OBRIGADA A TODOS!

X
Resumo
Os ecossistemas de bancos submarinos são considerados de elevada importância uma vez que contêm elevada biodiversidade marinha, tendo assim um elevado interesse económico. Este trabalho teve como local de estudo o banco submarino Condor, que se localiza sensivelmente a 10 milhas náuticas a Sudoeste da ilha do Faial. Foram objectivos principais deste estudo caracterizar qualitativamente e quantitativamente as comunidades planctónicas e determinar as suas variações no tempo e no espaço, bem como associar os respectivos padrões de distribuição aos factores físicos e ambientais envolventes. Para esse efeito foram realizados no âmbito do projecto CONDOR (PT0040 co-financiado pelo programa EEA Grants Financial Mechanism - Iceland, Liechtenstein and Norway) sete cruzeiros oceanográficos a bordo do N/I “Arquipélago” entre Março de 2009 e Março de 2010. Recolheram-se um total de 103 amostras de água para análise fitoplanctónica e 110 amostras para determinar a concentração de clorofila a. Obtiveram-se simultaneamente dados de CTD e foi recolhido um total de 59 amostras de zooplâncton. Com o processamento de algumas das respectivas amostras em laboratório, identificaram-se em termos taxonómicos, o fitoplâncton e zooplâncton, bem como, foram estimadas as abundâncias e as biomassas de zooplâncton.

O presente trabalho concerne apenas a 7 estações de amostragem biológica/caracterização físico/química da água (versus um total de cerca de 20 estações de amostragem realizados em cada um dos cruzeiros). Os resultados obtidos pelos perfis de CTD revelaram uma coluna de água estratificada no Verão e bastante misturada no Inverno/Primavera, bem como um máximo de oxigénio também em Julho e não em Março como seria de esperar. Os resultados também mostram forte variação sazonal das comunidades em estudo, com maiores abundâncias planctónicas a ocorrer nos meses de Março (Inverno/Primavera) e menores em Novembro (Outono). Igualmente, constataram-se diferenças significativas ao nível da diversidade e abundância de plâncton dentro e entre as estações do ano estudadas. Verificou-se uma relação directa entre a profundidade da DCM e a profundidade onde se registou maior diversidade e abundância fitoplanctónica, ocorrendo esta sensivelmente aos 75 m no Verão e aos 25 m no Inverno/Primavera. A biomassa máxima de zooplâncton foi registada em Março durante a noite (57,47 mg.m\(^{-3}\)) e a mínima em Junho durante a noite (2,98 mg.m\(^{-3}\)). Foi igualmente em Março, o mês com maiores valores de abundância e onde se registou a menor diversidade taxonómica de zooplâncton, com um total de 95% de copépodes.
Abstract

The seamount ecosystems are considered highly important due to an increased marine biodiversity, and thus, high economical interest. The study site of this work was the Condor seamount, located about 10 nautical miles Southwest of the island of Faial. The main objectives of this study were to characterize the planktonic communities qualitatively and quantitatively and determine their variation in time and space, as well as associate their respective distribution patterns to physical and environmental factors. For this purpose under the framework of CONDOR project (PT0040 co-financed by the EEA Grants Financial Mechanism - Iceland, Liechtenstein and Norway) seven oceanographic cruises were carried aboard R/V "Archipelago" between March 2009 and March 2010. A total of 103 water samples for phytoplankton analysis and 110 samples to determine chlorophyll a concentration were collected. CTD casts and a total of 59 samples of zooplankton were also obtained. In laboratory samples were processed, phyto and zooplankton were taxonomically identified, as well as their abundance and zooplankton biomass.

The present work concerns only seven stations of biological sampling and physical/chemistry characterization of water (versus a total of about 20 sampling stations achieved in each of the cruises). The results obtained by CTD profiles revealed a stratified water column in Summer and very mixed water in the Winter/Spring, as well as an oxygen maximum in July and not in March as expected. The results obtained in this work show strong seasonal variation of the communities in study, and the highest planktonic abundance occurred in March (Winter/Spring) and the lowest in November (Autumn). The existence of significant differences of its diversity and abundance within and between the stations of the year studied were also indicated. A direct relationship between the depth of DCM and the depth where there was greater phytoplanktonic diversity and abundance, was found occurring at 75 m in the Summer and 25 m in Winter/Spring. The maximum zooplankton biomass was registered in March during the night (57.47 mg.m\(^{-3}\)), while the minimum was in June during the day (2.98 mg.m\(^{-3}\)). The lowest zooplankton taxonomical diversity was also registered in March, the month with highest values of abundance, with a total of 95% Copepoda.
This study provided for the first time information about planktonic communities in Condor seamount and, in addition, has shown that multidisciplinary and continuous studies are of high importance to a good evaluation/interpretation of the relationship between the biological and oceanographical processes.
1. Introdução

Em todas as regiões oceânicas estima-se que existam entre 10 e 100 mil montes submarinos com mais de 1 km de altura e mais de 1 milhão com mais de 100 m de altura (Pitcher et al., 2007). Nos dias de hoje, os montes submarinos têm sido alvo de grande interesse científico, o que se deve ao facto de serem dos ambientes marinhos com maior produtividade biológica, biodiversidade marinha e serem zonas com grande interesse económico ao nível dos stocks pesqueiros em oceano aberto (Rogers, 1994 and Pitcher et al., 2007). As grandes biomassas de organismos encontradas nos montes submarinos e respectiva diversidade estão, normalmente, relacionadas com os diferentes regimes de correntes associadas a estes ecossistemas (Martin & Christiansen, 2009). Em particular, um estudo conjunto de dois montes submarinos, Sedlo e Seine, através do projecto Europeu FP5-OASIS demonstrou bem a necessidade de conhecer melhor os processos de formação e característicos dos ecossistemas de montes submarinos e a sua influência no oceano envolvente. Um tema chave deste projecto foi a compreensão das interacções entre os processos físicos, biogeoquímicos e biológicos dos montes submarinos. Para este tipo de sistema é particularmente importante conhecer e interpretar o papel dos organismos planctónicos, uma vez que estes constituem a base de toda a teia trófica marinha (Silva, 2000).

Dado o facto de os ecossistemas encontrados em montes submarinos serem de grande importância tanto ao nível biológico, como económico e social, é de extrema importância compreender os processos biológicos e oceanográficos que os caracterizam, bem como a biodiversidade lá existente, de modo a se poderem formular medidas de gestão e conservação. O monte submarino Condor, situado a Sudoeste da ilha do Faial não tem registos de estudos oceanográficos anteriores. Assim sendo, é de grande oportunidade e utilidade fazer um primeiro estudo que avalie as comunidades planctónicas, bem como as suas características sazonais.

O conhecimento biogeoquímico do oceano exige uma observação intensiva no espaço e no tempo (Gibb et al., 2000). Nesse sentido, o trabalho realizado por Silva (2000) foi um dos primeiros efectuados para as comunidades de zooplâncton (nos primeiros 150 m de profundidade) nos Açores enfatizando os padrões de variação temporal.

O presente estudo tem como objectivos principais a descrição e quantificação em profundidade das comunidades planctónicas no monte submarino Condor e áreas adjacentes. Em particular pretende-se fazer a caracterização das comunidades fitoplanctónicas (em
profundidade) e zooplanctónicas (sub-superficiais), avaliando a sua biodiversidade e abundância nas diferentes zonas e épocas do ano. Posteriormente, será feita uma relação entre estes resultados e os parâmetros oceanográficos medidos na coluna de água para o mesmo dia e locais de amostragem com o objectivo de associar a variação das comunidades com a variação dos factores físicos, biológicos e ambientais ao longo do ano. Caso exista uma relação evidente entre ambas as comunidades identificar-se-ão, também, os principais mecanismos e relações existentes entre elas.

Esta dissertação está dividida em 6 capítulos, correspondendo ao primeiro a presente introdução. O seguinte capítulo (capítulo 2) apresenta informações sobre o estado da arte de comunidades planctónicas em montes submarinos. O capítulo 3 apresenta uma descrição dos dados recolhidos e seu processamento. No capítulo 4 são apresentados os principais resultados deste trabalho que serão discutidos no capítulo 5. Por fim, o capítulo 6 apresenta as principais conclusões deste estudo.

2. Enquadramento

2.1. Arquipélago dos Açores e região de estudo

O Atlântico Nordeste (30-5º W, 20-45º N) é uma bacia de grande profundidade (até 5000-6000 m), delimitada pela Crista Médio Atlântica a Oeste e os continentes Europeu e Africano a Este. Esta bacia é caracterizada pela presença de um grande número de montes submarinos, que em vários casos se tornam emergentes assumindo a forma de arquipélagos (Açores, Madeira, Canárias e Cabo Verde) (Machín et al., 2009). O Arquipélago dos Açores caracteriza-se por ter uma pequena plataforma, rodeada por águas profundas cobertas com montes submarinos (Guénette & Morato, 2001). Possui nove ilhas vulcânicas e encontra-se localizado entre 37-40 ºN e 25-32 ºW.

No Atlântico encontram-se 19% do total de montes submarinos dispersos pelo Globo (Pitcher et al., 2007). São várias as definições dadas para os montes submarinos, sendo a adoptada por Pitcher et al. (2007) que estes correspondem a "qualquer elevação, topograficamente distinta do fundo do mar, com mais de 100 metros de altura e que não emerge da superfície do mar". O monte submarino Condor localiza-se a Sudoeste do Arquipélago dos Açores (Fig. 1) e apresenta uma grande importância biológica devido à presença de corais de profundidade, esponjas, ouriços-do-mar, caranguejos e peixes de importância comercial (Morato et al., 2010). Quaisquer montes submarinos são considerados ambientes vulneráveis,
bem como os ecossistemas de fontes hidrotermais, agregações de esponjas e corais de águas frias (Morato et al., 2010).

Figura 1 – Localização do banco submarino Condor no grupo central do Arquipélago dos Açores (em cima) e uma perspectiva pormenorizada do banco (em baixo) (créditos: F. Tempera ©ImagDOP).

O Arquipélago dos Açores caracteriza-se por pertencer a uma região oceânica oligotrófica, por sua vez caracterizada por possuir uma produção primária reduzida devido à baixa concentração de um ou mais nutrientes limitantes (Woods & Barkmann, 1995). As zonas de oceano aberto contribuem para 80% da produção global do oceano e 70% para a exportação total dessa produção (Karl et al., 1996). As regiões de alta produtividade são caracterizadas por uma maior abundância de diatomáceas, enquanto que em regiões oligotróficas as diatomáceas são, normalmente, responsáveis por menos de 2% do total de biomassa fotossintética. Em muitos casos as cianobactérias e os pequenos dinoflagelados constituem 70 a 90% do total dessa biomassa, enquanto que os coccolitóforos e os dinoflagelados têm uma menor contribuição para essa biomassa (Marañón et al., 2000).

2.2. Fitoplâncton

O fitoplâncton é composto por uma elevada diversidade de grupos de organismos unicelulares, podendo alguns destes formar pequenas colónias (Raymont, 1980).

Kahru & Nõmman (1991) reportaram alterações drásticas na estrutura dimensional das partículas planctónicas existentes na região de fronteira entre o giro central e a corrente dos
Açores, sem contudo observarem diferenças significativas na concentração da clorofila total. Estudos feitos na frente dos Açores indicam que normalmente não se verifica uma correspondência entre a clorofila a e a distribuição de carbono orgânico particulado (POC). Os valores mais elevados de POC (>50 mg.m$^{-3}$) são encontrados a norte da frente subtropical (35ºN) (Fernández & Pingree, 1996).

De acordo com Cullen (1982), em zonas temperadas, a variação sazonal de fitoplâncton pode ser expressa em irradiação, mistura produzida pelos ventos e upwelling em algumas regiões. Segundo o mesmo autor, ao longo das estações do ano, a biomassa, a distribuição vertical e a composição específica de fitoplâncton é variável. Parâmetros como o oxigénio dissolvido e a distribuição dos nutrientes apresentam uma distribuição não-conservativa na coluna de água (Pérez et al., 1998). Os nutrientes estão disponíveis na camada superficial, mas a sua concentração aumenta com a profundidade (Raimbault et al., 1988). Estudos anteriores indicam que em épocas de chuva se verifica uma correlação positiva entre os níveis totais de azoto e fósforo com o zooplâncton (Dantas et al., 2009). Factores como massas de água, frentes e vórtices (eddies) condicionam a distribuição de materiais orgânicos dissolvidos e em suspensão na coluna de água (Doval et al., 2001).

O Atlântico apresenta perfis verticais de densidade associados a uma termoclina em profundidade distintos ao longo da latitude (Agustí & Duarte, 1999). A variabilidade na distribuição vertical da temperatura é responsável pelo padrão sazonal observado nas diversas regiões (Teira et al., 2005). No Atlântico Nordeste, abaixo dos 45ºN as águas superficiais sofrem estratificação vertical durante os meses mais quentes, contribuindo desta forma para o esgotamento de nutrientes à superfície devido ao bloom primaveril de fitoplâncton, conduzindo desta forma, a longos períodos de oligotrofia (Clark et al., 2001). A estabilidade da coluna de água tende a aumentar entre a Primavera e o Verão, ficando a camada de mistura mais superficial (10 a 30 m), enquanto no Outono e Inverno a camada de mistura se torna mais funda, favorecendo a entrada de águas frias de profundidade na zona fótica (Teira et al., 2005).

O fitoplâncton junto à superfície, onde a irradiação é elevada e a concentração de nutrientes é reduzida, possui a quantidade mínima de clorofila. Junto à nutriclina, a diminuição da irradiação e do aumento de nitratos disponíveis estimula o aumento de clorofila (Cullen, 1982). Também Furuya et al. (1995), refere que o aumento de nutrientes disponíveis pode ser acompanhado por um aumento da quantidade de clorofila a à sub-superfície. A clorofila aumenta com o aumento da latitude enquanto que o picofitoplâncton, correspondente às
células fotoautotróficas mais pequenas no oceano, diminui. Assim sendo, a razão entre o picofitoplâncton e a biomassa total de fitoplâncton tem uma forte correlação negativa com a clorofila (Li & Harrison, 2001). Este grupo de organismos pode, portanto, contribuir em mais de 75% para a produtividade primária total (Teira et al., 2005). Numa relação em profundidade, a clorofila a (Chl a) é máxima à superfície e diminui em profundidade (Raimbault et al., 1988). Sabe-se também que a contribuição do picoplâncton para a produtividade primária aumenta com a profundidade, sendo cerca de 45% aos 60 m e 60% aos 120 m (Pérez et al., 2006). Contrariamente, Savidge et al. (1995) afirmam que os grupos fitoplanctónicos mais pequenos são predominantes nas camadas superiores em condições estratificadas no fim da Primavera e Verão, quando a luminosidade é maior e o crescimento dependente de nutrientes reciclados.

A estrutura vertical de clorofila e consequente formação de uma DCM (Profundidade de Clorofila Máxima ou Deep Chlorophyll Maximum) em áreas temperadas oligotróficas pode ser devida a processos físicos, bem como biológicos (Varela et al., 1992). Segundo Agustí & Duarte (1999), a profundidade de compensação para o crescimento de fitoplâncton encontra-se cerca de 50 m acima da termoclina nas áreas de giro, impedindo a formação de uma DCM associada à termoclina. A profundidade da DCM está associada à profundidade da nutriclina (Lorenzo et al., 2004; Nogueira et al., 2006) e, durante a Primavera, Verão e Outono, está notavelmente evidenciada (Teira et al., 2005). Quando as condições são favoráveis em termos de luz e nutrientes ocorre na DCM o maior desenvolvimento dos grupos fitoplanctónicos (Raimbault et al., 1988). Nas zonas oligotróficas as diferenças entre as biomassas de fitoplâncton entre a superfície e a DCM não são significativas (Marañón et al., 2003). Em giros subtropicais, a utilização da concentração de clorofila a como indicador da biomassa de fitoplâncton pode conduzir a determinações erradas da DCM como máximo da biomassa de carbono (Pérez et al., 2006). Vários mecanismos são propostos para a formação e manutenção da DCM: máximo de produtividade e clorofila a junto à nutriclina, adaptações fisiológicas à disponibilidade de luz e nutrientes, diminuição da taxa de afundamento do fitoplâncton e comportamentos de agregação do mesmo (Cullen, 1982). Teira et al. (2005) referem que o picofitoplâncton contribui em mais do que 60% para a clorofila a na DCM.

A concentração de clorofila a pode ser utilizada com o objectivo de estimar a abundância fitoplanctónica, podendo ser considerada como um indicador da biomassa de fitoplâncton (Cullen, 1982). Contudo, embora seja um indicador de fitoplâncton, a clorofila a não pode ser considerada como um bom indicador da distribuição do alimento disponível para o
zoolâncton (Cullen, 1982). Para a zona da frente dos Açores (NE do Atlântico) já foram reportadas concentrações de Chl a entre 0,1 e 1 mg.m\(^{-3}\) (Doval et al., 2001; Lino, 2009).

O *bloom* primaveril, que se estende entre 39 e 50ºN (Longhurst, 1998), ocorre devido à entrada de nutrientes na zona eufótica da termoclína sazonal, disponíveis devido à mistura que ocorre durante a estação de Inverno. O *bloom* termina quando todos os nutrientes tiverem sido consumidos (Nogueira et al., 2006). No entanto, a ocorrência de tempestades pode ter dois efeitos neste *bloom* primaveril: ou se intensifica devido ao aumento de nutrientes disponíveis pela mistura da coluna de água ou se reduz devido à diminuição de luz disponível (Follows & Dutkiewicz, 2002). Por vezes, em algumas zonas, na Primavera pode observar-se alguma estratificação resultante da fraca mistura no Inverno (Teira et al., 2005). Em águas oligotróficas e temperadas o *bloom* primaveril e por vezes outonal também ocorre quando as águas se tornam mais estratificadas e quentes, iniciando-se com o aumento de pequenas diatomáceas, seguido por um aumento de diatomáceas médias, flagelados e cianobactérias e, só mais tarde, se nota o aumento de dinoflagelados (Cushing, 1989). Nas águas oceânicas temperadas o máximo desenvolvimento da população de diatomáceas (principalmente do gênero *Chaetoceros* e *Nitzschia*) ocorre normalmente na Primavera, quando se inicia a estabilidade vertical (Savidge et al., 1995).

2.3. Zoolâncton

Ao zoolâncton pertencem diversos grupos de pequenos animais de mobilidade limitada que passam toda a sua vida ou parte do seu ciclo de vida no plâncton, podendo ocupar várias camadas da coluna de água (Raymont, 1983). A chave de grande importância na teia alimentar marinha é o zoolâncton, uma vez que é responsável por transferir a energia obtida através da produtividade primária para os níveis tróficos superiores (Silva, 2000; Clark et al., 2001). O stock destes organismos em oceanos oligotróficos não é muito menor do que em águas temperadas, podendo a sua taxa de produção ser mais elevada (Cushing, 1989). O *bloom* primaveril de fitoplâncton (rico em diatomáceas) é considerado por iniciar e sustentar o ciclo de produção secundária, verificando-se uma produção de copépodes elevada durante esta época do ano (Turner, 1984; Ban et al., 1997) e o crescimento das larvas de peixe (Turner, 1984). No entanto, o zoolâncton precisa de tempo para responder às alterações do fitoplâncton, o que pode ser um processo rápido ou mais demorado (Richardson, 1985). Os copépodes são tão abundantes que podem representar mais de 70% do número total de organismos numa amostra (Gaard et al., 2008), sendo o grupo Calanoida o mais abundante (Roe, 1984). Contudo, por vezes, a predação de copépodes pelas larvas de peixe pode ser mais favorável numa situação pós-*bloom* do que durante o *bloom* de diatomáceas (Ban et al.,
Os copépodes Calanoida adultos constituem grande parte da dieta dos crustáceos decápodes, misidáceos e peixes (Roe, 1984). O mesozooplâncton tem um importante papel no controlo do fitoplâncton de maiores dimensões, condicionando a distribuição do carbono na coluna de água (Huskin et al., 2001; Head et al., 2002). A neve marinha actua, também, como uma fonte de alimento viável para o zooplâncton mesmo quando o fitoplâncton está disponível (Dilling & Brzezinski, 2004).

Martin & Christiansen (2009) verificaram que a biomassa zooplanctónica, nas várias estações do ano, era mais reduzida no topo dos montes submarinos do que nas estações circundantes. O que pode causar esta distribuição é o regime de deslocamento e de correntes. Outro motivo é a fuga activa destes organismos e a predação. Estes factores são os principais responsáveis pela baixa biomassa de todas as classes de zooplâncton nos montes submarinos (Martin & Christiansen, 2009). Na estação quente do ano, Verão, factores como a migração nictimeral do zooplâncton, capturas, excreção e remineralização de detritos produzem uma fonte fraca de amónia em zonas oligotróficas (Nogueira et al., 2006). O ciclo de produção em zonas oligotróficas é praticamente estacionário, no entanto as cadeias alimentares são longas e a distribuição dos organismos dispersa. As grandes pescarias do mundo são feitas com base nas tradicionais teias alimentares, com início nas pequenas diatomáceas e seus sucessores (Cushing, 1989).

3. Material e Métodos

3.1. Descrição da região em estudo

O banco submarino Condor situa-se a Sudoeste da Ilha do Faial no Arquipélago dos Açores (Santos et al., 2010) (cf. Fig. 1). A sua distância à ilha do Faial é de cerca de 10 milhas náuticas. Apresenta dois cumes e uma orientação de Este para Oeste. Em termos de dimensão, este monte submarino tem mais de 1 km de altura, tem cerca de 26 km de comprimento e 7,4 km de largura e a sua profundidade pode ir de 180 m a 1000 m¹. O banco Condor apresenta uma forma alongada e achatada e é de grande importância biológica devido à presença de corais de profundidade, esponjas, ouriços-do-mar, caranguejos e peixes de importância comercial (Morato et al., 2010).

A zona do banco submarino, tal como toda a região dos Açores caracteriza-se por ser uma região oceânica oligotrófica, apresentando assim reduzida produção biológica devido à

¹ http://www.condor-project.org/
reduzida concentração de nutrientes disponível (Woods & Barkmann, 1995; Ríos et al., 2005).

3.2. Dados de cruzeiros, estações e amostras

No âmbito do projecto CONDOR-PT0040 (“Observatório para o Estudo de Longo Prazo e Monitorização dos Ecossistemas de Montes Submarinos nos Açores”) foram realizados entre Março de 2009 e Setembro de 2010 vinte cruzeiros envolvendo diferentes áreas e objectivos de investigação (e.g. cetáceos, telemetria, peixes demersais, crustáceos, mapeamento de habitats e ainda cruzeiros de oceanografia física e biológica).

As amostras recolhidas para as diferentes análises contempladas neste estudo foram recolhidas a bordo do N/I “Arquipélago” durante o ano de 2009 e 2010, no contexto do projecto CONDOR. Os cruzeiros destinados à recolha de amostras de fitoplâncton, clorofila a, nutrientes e medições com CTD (Conduvitividade – Temperatura – Profundidade) realizaram-se em Julho (“CONDOR-OCE-2009-V01”) e Novembro (“CONDOR-OCE-2009-O01”) de 2009 e em Março de 2010 (“CONDOR-OCE-2010-P01”). Os cruzeiros para recolha de amostras de zooplâncton decorreram em Março (“CONDOR-PAC-MAR09”), Junho (“CONDOR-PAC-JUN09”), Agosto (“CONDOR-PAC-AGO09”) e Novembro (“CONDOR-PAC-NOV09”) de 2009. Foi contabilizado para este estudo um total de 22 estações de fitoplâncton, 53 de clorofila a, 59 de zooplâncton e ainda 22 estações de CTD’s (Fig. 2 e Tabela I).

Figura 2 – Projecto CONDOR: Localização de estações biológicas amostradas no banco Condor, no canal Faial-Pico e em mar aberto. A azul, assinalam-se as estações em que se recolheram amostras de fitoplâncton e em que se realizaram perfis de CTD. A vermelho indicam-se as estações em que se analisou a concentração de clorofila a e a preto especificam-se as estações em que se recolheram amostras de zooplâncton. No mapa está representada a batimetria do banco e áreas adjacentes.
Tabela 1 – Tabela sumário do número de estações de amostragem e respectivo número total de amostras contabilizado neste estudo.

<table>
<thead>
<tr>
<th>Cruzeiro</th>
<th>Data</th>
<th>Pigmentos (Estações/Amostras)</th>
<th>Fito (Estações/Amostras)</th>
<th>Zoo (Estações)</th>
<th>CTD/O₂/Fluorescência</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDOR-PAC-MAR09</td>
<td>9-18 Março 2009</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>CONDOR-PAC-JUN09</td>
<td>16-22 Junho 2009</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>CONDOR-PAC-AGO09</td>
<td>11-20 Agosto 2009</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>CONDOR-OCE-2009-O01</td>
<td>5-9 Novembro 2009</td>
<td>18/106</td>
<td>8/33</td>
<td>0</td>
<td>8/33</td>
</tr>
<tr>
<td>CONDOR-PAC-NOV09</td>
<td>25-26 Novembro 2009</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>CONDOR-OCE-2010-P01</td>
<td>10-11 Março 2010</td>
<td>12/70</td>
<td>7/42</td>
<td>0</td>
<td>7/42</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>53/270</td>
<td>22/102</td>
<td>59</td>
<td>22/102</td>
</tr>
</tbody>
</table>

As amostras de nutrientes recolhidas nos cruzeiros efectuados não foram contabilizadas nos resultados deste trabalho devido ao curto espaço de tempo em que este foi efectuado, mas serão utilizadas em trabalhos posteriores.

É importante salientar que os cruzeiros realizados em Março são muitas vezes referidos ao longo da análise de resultados como cruzeiros realizados na Primavera, bem como os realizados em Junho/Julho/Agosto de Verão e os de Novembro de Outono. No entanto, deve ter-se em atenção que o cruzeiro “CONDOR-OCE-2010-P01” foi realizado ainda sob condições climatéricas típicas de Inverno, sendo por isso referido no texto como “Inverno/Primavera”. No Anexo A fornecem-se informações acerca dos parâmetros recolhidos em cada cruzeiro efectuado e indicam-se os diferentes códigos em que estes podem ser mencionados ao longo do corrente texto.

Para facilitar a localização de cada estação de recolha de fitoplâncton, foi dada uma letra do alfabeto a cada posição, a qual é mantida nos três cruzeiros efectuados, variando apenas o número da estação. As estações de zooplâncton têm também o mesmo código ao longo dos vários cruzeiros (Fig. 3).
Figura 3 – Estações de amostragem realizadas no âmbito do projecto CONDOR. As estações em que se recolheram águas para o estudo de fitoplâncton e em que se efectuaram perfis de CTD estão assinaladas a vermelho. As estações assinaladas a preto indicam os locais onde se fizeram recolhas de amostras de zooplâncton.

3.3. Processamento a bordo e em laboratório

3.3.1. Fitopigmentos

A bordo do navio de investigação rotularam-se os eppendorfs e anotaram-se numa folha de amostragem os dados referentes a cada estação (coordenadas, data, hora, profundidade, temperatura à superfície (sensivelmente a 40 cm da superfície) e a cerca de 3 m com a utilização de um termómetro calibrado (CRISON), bem como a temperatura fornecida pela sonda do navio, sonda esta localizada sensivelmente aos 4 m de profundidade). Após a entrada da Multi-sampler Rosette a bordo, foram recolhidos 1000 mL de água de cada uma de seis profundidades (5, 25, 50, 75, 100 e 150 m). Estas amostras foram colocadas num sistema de filtração (i.e. rampa de filtração + bomba de vácuo) e filtradas com filtros de fibra de vidro de 47 mm de diâmetro de poro (GF/F). Posteriormente, os filtros foram secos em papel, guardados nos respectivos eppendorfs e colocados em azoto líquido.

Em terra, os eppendorfs foram passados do azoto líquido para uma arca a -80°C até posterior análise em laboratório.

No laboratório procedeu-se à análise de fitopigmentos, colocando os filtros em tubos de plástico cobertos com papel de alumínio, devidamente identificados. A cada um destes tubos e ao tubo “branco”, que continha apenas um filtro seco, adicionaram-se 8 ml de acetona a
90% e agitaram-se energicamente, de modo a desagregar os respectivos filtros, permitindo assim uma melhor extracção. Os tubos foram guardados no frigorífico, no escuro, durante 24h. Após esse período, deixou-se que as amostras atingissem a temperatura ambiente, sendo de seguida centrifugadas durante 10 minutos a 4000 rpm.

O líquido sobrenadante foi decantado para células de quartzo (1 cm) e procedeu-se à leitura do valor de clorofila \(a \) e de feofitina \(a \) num espectrofluorímetro Perkin Elmer LS 55, seguindo a metodologia proposta por Yentsch e Menzel (1963) descrita em Strickland & Parsons (1972). A primeira leitura correspondia ao background (BG), cujo valor era subtraído de forma automática ao valor de fluorescência das amostras. De seguida procedeu-se à leitura do branco e à leitura por 3 vezes de cada amostra. Por fim, acidificou-se cada amostra com 3 gotas de HCL 0,1 N (que converte a Chl \(a \) em feofitina \(a \) por perda do átomo de magnésio, impedindo a sobreposição dos 2 espectros) e fez-se novamente a leitura do valor de fluorescência.

Devido à perda de algumas amostras durante a sua retirada do azoto líquido e a um erro ocorrido numa das análises no espectrofluorímetro, não existem 23 valores (missing values), ou seja, estações sem valores de fitopigmentos associados.

3.3.2. Fitoplâncton

A água utilizada para analisar as comunidades fitoplanctónicas e sua abundância foram recolhidas utilizando uma Rosette acoplada com 12 garrafas de Niskin (2,5 L cada). Este sistema comportava ainda um sensor CTD (modelo SBE 9 plus) e um fluorómetro para medição da fluorescência \textit{in situ}. Para posterior análise em laboratório dos organismos fitoplanctónicos, conservaram-se em frascos de vidro de âmbar (para equilibrar a dissolução das frústulas de sílica) 250 mL de água (provenientes das 6 profundidades referidas na alínea anterior) com 5 mL de formalina a 20% neutralizada. Os frascos, devidamente etiquetados, foram posteriormente guardados à temperatura ambiente e num local protegido da luz.

Para analisar em laboratório a abundância e diversidade fitoplanctónica de cada estação utilizou-se o método de Utermöhl (Sournia, 1978). Inicialmente, homogeneizou-se muito bem o frasco e de seguida montou-se um sistema com uma câmara e uma coluna de sedimentação. Moita (comunicação pessoal) sugere que para águas oligotróficas é aconselhável sedimentar 100 mL de água, pois são águas com pouca abundância fitoplanctónica. Assim, foram colocados 100 mL de água na coluna de sedimentação fazendo pressão sobre esta de modo a nada verter entre a câmara e a coluna. Acabou-se de encher a
coluna, até formar menisco, com água da torneira (com pH básico para não degradar os organismos com estruturas calcárias) e tapou-se a coluna. Deste modo, o sistema ficou montado sob vácuo, não vertendo água. O tempo de sedimentação dos organismos varia com o tamanho da coluna. Margalef (1969, *in Sournia, 1978*) definiu que o tempo de sedimentação em horas deve ser três vezes a altura da coluna de sedimentação em centímetros. Assim sendo, após 55 h de sedimentação, retirou-se a coluna de sedimentação e procedeu-se à observação da câmara num microscópio de inversão (DMIL) com uma ampliação de 200x, apenas com recurso a 400x quando necessário. Uma segunda fase da enumeração de organismos fitoplanctónicos foi a contagem, com utilização da ampliação de 400x, de pequenos dinoflagelados (os quais são pouco visíveis com a ampliação de 200x). Foram considerados pequenos dinoflagelados todos os dinoflagelados menores que 15 µm. Contaram-se 36 campos uniformemente distribuídos pela câmara de sedimentação, de modo a observar o equivalente a 1 mL de água. Os campos contados foram sempre os mesmos para todas as amostras, de forma a manter o mesmo rigor em todas as amostras. Este tipo de contagem pode ser responsável pela obtenção de dados sub- ou sobre-valorizados. Todos os organismos encontrados foram caracterizados até ao género específico ou até à espécie em alguns casos e sempre que possível. Como auxiliar de identificação de espécies teve-se como base os livros de Tomas (1997) e Schiller (1937).

De referir que, como consequência de um acidente ocorrido no transporte das amostras do cruzeiro do mês de Novembro (CONDOR-OCE-2009-O01), perderam-se 14 profundidades referentes a 5 amostras de água. Igualmente, devido a problemas técnicos reportados com a Rosette foram responsáveis pela existência de alguns missing values.

3.3.3. Zooplâncton

Nos quatro cruzeiros destinados à recolha de organismos zooplanctónicos utilizou-se uma rede Bongo, que consiste num sistema de duas redes com 60 cm de diâmetro, em que uma tem malha de 200 µm e a outra de 335 µm, contendo cada uma um copo colector. Os arrastos realizados seguiram uma direcção oblíqua, efectuando-se nos primeiros 100 m de profundidade a uma velocidade média de 2 nós, durante cerca de 20 minutos. Cada rede tinha acoplado um fluxómetro (“Digital Flow Meter Model 438110” da “Hydro-Bios Kiel”) a partir do qual se obtiveram informações sobre o volume de água filtrado. A rede Bongo tinha também um “TDR datalogger” para obter perfis de profundidade e temperatura, bem como para inferir a duração real do arrasto.
Após o arrasto, o zooplâncton da rede de 200 µm foi preservado num frasco com uma solução de formol neutralizado a 4%. Estas amostras foram, posteriormente, utilizadas em laboratório para análise de biomassas e identificação dos principais grupos de zooplâncton e sua abundância. O zooplâncton recolhido com a rede de 335 µm foi conservado em álcool a 96% para posterior análise genética. Os resultados das análises genéticas não serão apresentados ainda no âmbito deste trabalho uma vez que, ainda se encontram numa fase inicial de execução. Em laboratório foi determinada a biomassa zooplanctónica. Cullen (1982) define biomassa como a quantidade de material vivo numa determinada área. A amostra de zooplâncton foi filtrada com uma rede em forma de saco. Numa proveta de 250 mL, com uma resolução de 2 mL, colocou-se uma quantidade conhecida do formol filtrado. A rede (com volume de 2 mL) com o zooplâncton filtrado foi colocada dentro da proveta até estar completamente imersa no formol. A diferença entre o volume final (ao qual deve ser subtraído o volume da rede) e inicial observado na proveta corresponde ao volume deslocado de zooplâncton. Como o volume deslocado não é mais do que um indicador de biomassa, foi calculado o “Peso Seco” através de uma das fórmulas de Wiebe (1988):

\[
DW = 10^{\left(\frac{\log(DV) + 1.842}{0.865} \right)}
\]

com DW (Peso Seco ou Dry Weight) e DV (Volume deslocado ou Displacement Volume).

Para definir os diferentes grupos de organismos encontrados numa amostra de zooplâncton e sua abundância (número de indivíduos por unidade de volume de água) utilizou-se uma lupa (Nikon SMZ-2T). A identificação não foi feita até à espécie devido ao reduzido tempo disponível para este estudo. Dependendo do organismo observado, este pode ter sido identificado entre a ordem e o filo, excepto os Copépodes Pleuromamma sp. que foram classificados até ao género. Para a observação dos vários grupos a amostra foi retirada do formol, lavada e observada em água, visto que o formol é um conservante cancerígeno.

Uma vez que cada amostra de zooplâncton é demasiado grande para ser analisada num intervalo de tempo razoável, procedeu-se à observação de uma sub-amostra. A amostra total foi sub-dividida utilizando um fraccionador de Folsom. A fim de obter resultados estatisticamente viáveis, esta deve ser dividida de modo a que o número total de organismos observados nunca seja inferior a 400 (Stehle et al., 2007). A fracção de amostra observada foi na maioria das vezes 1/256, podendo no entanto ser maior ou menor dependendo da biomassa total de zooplâncton. Contudo, podem ocorrer dois tipos de erros: os grupos menos abundantes encontrados podem ser sobre-estimados ou não estarem representados nessa sub-
amostra. Para evitar estes erros, foi posteriormente analisada uma segunda sub-amostra (1/8), obtida a partir da amostra inicial, onde se identificaram e quantificaram todos os organismos que na sub-amostra 1/256 tinham sido encontrados em número inferior a 50.

Para fazer uma caracterização específica de ictioplâncton no banco submarino do Condor, foram utilizadas as amostras recolhidas e preservadas para zooplâncton. Utilizando a sub-amostra de 1/8, mencionada anteriormente para zooplâncton, foi feita uma triagem de todas as larvas e ovos de peixe encontrados. Os ovos foram apenas contabilizados para um controle de abundância, enquanto que, as larvas serão identificadas numa fase posterior a este trabalho, não entrando portanto nos resultados deste estudo.

As dificuldades causadas pelo estado do tempo e avarias de equipamento foram responsáveis pela falta de 12 amostras de zooplâncton.

3.3.4. Temperatura e Salinidade

A visualização em tempo real dos resultados da sonda CTD foi efectuada a bordo, num computador com software específico para o efeito (Seasave da Sea-bird). Na aquisição de dados, ao longo de uma estação oceanográfica, a Rosette contendo o equipamento é arredada de modo a efectuar um perfil vertical entre a superfície e uma determinada profundidade. Antes de iniciar a descida da sonda, procedeu-se à estabilização, a baixa profundidade, dos vários parâmetros de medida (especialmente a pressão) e só então se desceu o instrumento a uma velocidade de cerca de 1 ms\(^{-1}\) ou menos.

As medições com a sonda CTD realizadas a bordo do NI “Arquipélago” foram posteriormente processadas para se caracterizar fisicamente a região em estudo, através da obtenção de perfis de condutividade, temperatura e pressão ao longo da coluna de água nas várias estações de amostragem.

3.3.5. Análise Estatística dos Dados

A interpolação efectuada com os valores de biomassa de zooplâncton foi realizada através da extensão “Spatial Analyst” da ferramenta “Inverse Distance Weighted” do programa ArcGIS 9 (versão 9.3).

A análise estatística dos dados obtidos neste trabalho foi feita recorrendo a dois programas. O software Brodgar 2.6.6 foi utilizado para fazer a análise da dispersão dos dados de abundância de fito e zooplâncton por cruzeiro e o software Primer 6 (Clarke & Gorley, 2006) para fazer análises de similaridade (ANOSIM; Clarke, 1993), análises de classificação
Os dados trabalhados no Primer 6, de modo a reduzir o ruído da análise, foram sujeitos à exclusão de alguns grupos de organismos e algumas estações. Para tal, retiraram-se os taxa que estivessem representados em menos de 5% das estações e retiraram-se as estações com menos de 4 taxa (5% dos taxa totais). À parte destes, nas análises de fitoplâncton também o grupo denominado “algas” e o dos “ciliados” foram excluídos, bem como os pequenos dinoflagelados, estes últimos por apresentarem abundâncias muito extremas, comparativamente aos restantes grupos (ou na ordem dos zero ou dos milhares).

Na matriz de dados biológica foi aplicado o coeficiente de similaridade de Bray-Curtis e na ambiental a distância Euclideana. Algumas análises aplicadas aos dados foram a ANOSIM (Análise de Similaridade) que consiste num teste não-paramétrico que permite ver se há diferenças significativas na composição específica (p<0,1%). Valores de R próximos de 1 indicam uma forte diferença entre os grupos, enquanto valores próximos de 0 indicam que não existem diferenças significativas entre os grupos. Também se realizou a análise de classificação com o perfil de similaridade (SIMPROF) activado permitindo estudar a relação entre estações, formando grupos hierárquicos entre as amostras mais similares e fez-se uma análise MDS (Escalonamento Multidimensional) que nos dá a distância entre amostras utilizando o método de regressão não-paramétrico de Kruskal. Para auxiliar a compreensão da contribuição de cada taxa fez-se uma análise SIMPER e os perfis de dominância foram obtidos efectuando curvas de dominância. Uma última análise, denominada BEST, foi efectuada pelo método BIOENV que utiliza a correlação de Spearman, permitindo testar as correlações existentes entre factores biológicos e ambientais, de modo a aferir quais os factores ambientais que melhor explicam os padrões biológicos observados.

Por fim, foi calculado um índice por rarefação (“Rarefaccion Diversity Index”), que corresponde a uma medida de diversidade que compara a riqueza específica entre amostras de diferentes tamanhos, standardizando cada amostra para um mesmo número de indivíduos (n=100), também classificado como E₁₀₀.
4. Resultados

4.1 Caracterização Física e Biológica da Coluna de Água

4.1.1. Variação Espacial

4.1.1.1 Verão

Durante o cruzeiro de Verão (CONDOR-OCE-2009-V01) foram obtidos para os vários locais em estudo através de um CTD e de um fluorímetro, dados que caracterizam de forma físico/química e biológica a coluna de água (Fig. 4). Durante o cruzeiro, a água apresentava-se bem misturada nos primeiros 40 m de profundidade com uma temperatura que rondava os 21º C (Fig. 4 A). A termoclina sazonal é visível senzivelmente entre os 40 e os 70 m de profundidade, a partir da qual a temperatura continua a diminuir atingindo entre os 15º C e os 16º C aos 200 m de profundidade. Os perfis verticais da salinidade, referentes às 7 estações em estudo, mostram uma haloclina bem pronunciada apenas na estação correspondente ao topo do banco submarino Condor (D_1132, cf. Fig. 3) sensivelmente aos 30 m de profundidade com um mínimo de salinidade (36,13) aos 40 m (Fig. 4 B). Em todas as outras estações não se observa uma halocline. A salinidade máxima de 36,30 foi encontrada nas estações F_1173 e G_1200 localizadas respectivamente a oeste e norte do Condor (cf. Fig. 3). Os perfis verticais da fluorescência (Fig. 4 C) e da concentração de clorofila a obtidos em análise laboratorial (Fig. 4 D) mostram comportamentos similares, embora os valores de fluorescência se apresentem na sua maioria superiores aos valores de concentração da clorofila a medidos em laboratório. Em D só há dados superficiais para as estações A_Canal_1252, B_1245 e C_1126 (cf. Fig. 3). A DCM encontra-se sensivelmente entre os 40 e os 100 m em todas as estações, sendo que na maioria a DCM ocorre aos 75 m de profundidade. Em C a fluorescência máxima de 0,38 mg.m\(^{-3}\) é encontrada na estação B_1245 (mais próxima do Faial) e em D como apenas se tem dados superficiais desta estação, a máxima concentração de Chl a (0,14 mg.m\(^{-3}\)) está registada na estação D_1132 localizada no topo do Condor. Os perfis de oxigénio (Fig. 4 E) para as várias estações de amostragem revelam máximos de oxigénio (> 5,3 mL.L\(^{-1}\)) a profundidades coincidentes com as das respectivas DCM’s associadas a valores aumentados de turbidez (Fig. 4 F). Excepcionalmente, a estação do canal apresenta a turbidez máxima à superfície (0,056 FTU). De referir ainda que, é na estação localizada no topo do Condor (D_1132, cf. Fig. 3) que o valor máximo de oxigénio é atingido (> 5,5 mL.L\(^{-1}\)). Por seu turno, a estação B_1245 (localizada entre o Faial e o Condor, cf. Fig 3) mostra um perfil de oxigénio diferente de todas as outras estações, sem um pico máximo e bem evidente de oxigénio, mas sim,
sucessivos aumentos e diminuições ao longo da coluna de água sem uma relação aparente com a DCM.

Figura 4 – Perfis verticais dos factores físico/químicos (A – Temperatura; B – Salinidade; E – Oxigénio e F – Turbidez) e biológicos (C – Fluorescência e D – Concentração de Clorofila a) obtidos durante o cruzeiro “CONDOR-OCE-2009-V01” realizado no Verão de 2009. A posição de cada estação no mapa é indicada pelos códigos “A, B, C, D, E, F e G” (cf. Fig. 3).
4.1.1.2 Outono

No Outono (cruzeiro CONDOR-OCE-2009-001) a termoclina sazonal é ainda evidente (Fig. 5 A), sensivelmente entre os 40 e os 60 m de profundidade, apresentando-se bem misturada acima dessas profundidades com temperaturas máximas da ordem dos 19,5º C, diminuindo depois até aos 14,5º C aos 200 m de profundidade. A estação A_Canal_1260 localizada sensivelmente a meio do canal Faial-Pico distingue-se um pouco das restantes pelos valores de temperatura mais baixos à superfície, com águas menos bem misturadas e temperaturas mais altas por volta dos 150 m (fundo), com um declive mais acentuado entre os 100 e 150 metros do que as restantes estações.

Os perfis verticais da salinidade, referentes às 8 estações em estudo, mostram em geral para todas as estações, e com excepção da estação no canal, um máximo de salinidade sensivelmente entre os 60 e os 100 m de profundidade (Fig. 5 B), com um máximo de 36,17 na estação C_1265 (cf. Fig. 3) aos 65 m. A haloclina é visível entre os 100 e os 150 m de profundidade em quase todas as estações. Valores mínimos são encontrados aos 200 m de profundidade.

Os perfis verticais da fluorescência (Fig. 5 C) e da concentração de clorofila a obtidos em análise laboratorial (Fig. 5 D) mostram comportamentos distintos nalguns casos e os valores de fluorescência apresentam-se na sua maioria superiores aos valores de concentração da clorofila a medidos em laboratório. De referir ainda que, os dados de fluorescência são mais consistentes entre estações do que os mesmos para a clorofila medida em laboratório. A DCM ocorre em todas as estações entre os 25 e os 75 m, sendo em média observada sensivelmente aos 50 m de profundidade. A estação A_Canal_1260 apresenta tanto em C como em D um máximo de clorofila mais superficial (25 m) do que as estações correspondentes ao banco submarino. Por seu turno, é interessante constatar que o pico máximo de clorofila é atingido na estação B_1291 (cf. Fig. 3), localizada entre o Faial e o Condor (fluorescência > 0,3 mg.m\(^{-3}\)) e também na estação E_1280 (cf. Fig. 3) localizada a Sudoeste do Condor (clorofila a > 0,2 mg.m\(^{-3}\)).

Os perfis de oxigénio (Fig. 5 E) para as várias estações de amostragem revelam máximos (> 5 mL.L\(^{-1}\)) entre os 40 e os 80 m de profundidade, coincidentes com as das respectivas DCM’s e também com picos máximos de turbidez (apesar de pouco pronunciados, aparecem entre os 40 e os 60 m de profundidade) (Fig. 5 F). De referir ainda que, é na estação D_1271 (cf. Fig. 3) localizada no centro do Condor que o valor máximo de oxigénio é atingido (> 5,1 mL.L\(^{-1}\)).
Figura 5 – Perfis verticais dos factores físicos/químicos (A – Temperatura; B – Salinidade; E – Oxicénio e F – Turbidez) e biológicos (C – Fluorescência e D – Concentração de Clorofila a) obtidos durante o cruzeiro “CONDOR-OCE-2009-O01” realizado no Outono de 2009. A posição de cada estação no mapa é indicada pelos códigos “A, B, C, D, E, F, G e H” (cf. Fig. 3).

4.1.1.3 Inverno/Primavera

No final do Inverno de 2009, princípio da Primavera de 2010 (cruzeiro CONDOR_OCE_2010_P01) a termoclina sazonal já não é evidente (Fig. 6 A). De facto, com excepção da estação D_1304 (cf. Fig. 3) localizada no topo do Condor, todas as restantes estações apresentam águas bem misturadas até aos 200 m de profundidade. A estação do topo mostra uma suave termoclina e haloclina (Fig. 6 B) a partir dos 100 m de profundidade. De igual modo, não se observam haloclinas nas restantes estações. Acima dos 200 m de profundidade
as temperaturas e salinidades rondam em média, respectivamente, os 15,2º C e os 36,1. Contudo, no topo do Condor abaixo dos 100 m de profundidade, estes valores baixam para < 14,5º C e salinidades < 36.

Os perfis verticais da fluorescência (Fig. 6 C) e da concentração de clorofila a obtidos em análise laboratorial (Fig. 6 D) mostram comportamentos distintos nalguns casos e os valores de fluorescência apresentam-se na sua maioria superiores aos valores de concentração da clorofila a medidos em laboratório. A DCM é visível apenas em algumas estações sensivelmente aos 50 m de profundidade. Na análise laboratorial de chl a obtiveram-se concentrações mais elevadas na estação D_1304 localizada no topo do Condor (cf. Fig. 3).

Embora exista uma DCM nas estações do Condor, a estação do canal (A_Canal_1293) apresenta-se bem misturada em relação à clorofila, ao oxigénio (Fig. 6 E) e ainda à turbidez (Fig. 6 F). Pode ainda observar-se que as estações do banco possuem o máximo de oxigénio nos primeiros 40 m. Quanto à turbidez apesar de se verificarem algumas variações ao longo dos primeiros 200 m de profundidade, em todas as estações do banco submarino este parâmetro é máximo nos primeiros 50 m. Por seu turno, é interessante constatar que os picos máximos de fluorescência são atingidos, tal como no Outono de 2009, na estação B_1324, localizada entre o Faial e o Condor (cf. Fig. 3) (fluorescência > 0,6 mg.m⁻³ à superfície, com um segundo pico aos 50 m em cerca de 0,5 mg.m⁻³) e ainda na estação C_1298 localizada a Este do topo do banco (pico de clorofila a aos 50 m de ± 0,5 mg.m⁻³).
Figura 6 – Perfis verticais dos factores físico/químicos (A – Temperatura; B – Salinidade; E – Oxigénio e F – Turbidez) e biológicos (C – Fluorescência e D – Concentração de Clorofila a) obtidos durante o cruzeiro “CONDOR-OCE-2010-P01” realizado no período Inverno/Primavera de 2010. A posição de cada estação no mapa é indicada pelos códigos “A, B, C, D, E, F e H” (cf. Fig. 3).
4.1.2. Variação Sazonal

4.1.2.1. Banco Submarino Condor

Os perfis verticais das temperaturas médias do Verão e Outono de 2009 e Inverno/Primavera de 2010 não apresentam grandes diferenças entre as estações do ano em profundidades abaixo dos 200 m e até sensivelmente os 1600 m (Fig. 7 A). Tal como esperado, as temperaturas à superfície são superiores, com valores em média > 14°C, diminuindo progressivamente em profundidade a atingindo cerca de 4,7°C no fundo. A representação de um maior detalhe na variação das temperaturas à superfície, nomeadamente, acima dos 200 m de profundidade (Fig. 7 B) mostra claramente o efeito da sazonalidade na coluna de água, com termoclínias de Verão e de Outono bem pronunciadas (particularmente a de Verão) respectivamente aos 20 e 35 m de profundidade. Durante a estação de Inverno/Primavera a coluna de água mostra-se bem misturada. Por seu turno, os perfis verticais de salinidade para a coluna total de água (Fig. 7 C) e para os primeiros 200 m de água (Fig. 7 D) demonstram valores mais altos de salinidade à superfície (> 36) diminuindo em geral para o fundo (1600 m de profundidade) com valores de salinidade inferiores a 35. Observa-se contudo entre os 800 e 1000 metros um segundo pico de salinidade, embora pouco pronunciado. No Verão, nos primeiros 200 m de profundidade a salinidade é nitidamente superior aos valores medidos ao longo da coluna de água durante as outras duas estações. Enquanto a estação I/P_10 apresenta, tal como na temperatura, uma coluna de água bem misturada, no Outono pode observar-se um máximo de salinidade aos 80 m, seguido de uma diminuição constante. Os perfis verticais de fluorescência (Fig. 7 E) e concentração de clorofila a (Fig. 7 F) evidenciavam DCM entre os 60 e os 75 m no Verão, a 50 m no Outono e entre os 12 e os 25 m no Inverno/Primavera, seguida de diminuição constante dos factores em causa. Quanto ao oxigénio dissolvido na coluna de água, este é máximo aos 40 m no Verão, aos 50 m no Outono e à superfície (10 m) no Inverno/Primavera (Fig. 7 H), o que corresponde aproximadamente à zona da DCM. Após atingir o máximo, a concentração de oxigénio vai diminuindo até aos 700 m, onde atinge o mínimo (4,0 mL.L⁻¹) e volta a aumentar (Fig. 7 G). Águas mais turvas foram encontradas, quer à superfície, quer na zona da DCM. Com excepção de um máximo muito elevado (0,18 FTU) encontrado no Outono à superfície (que se questiona a possibilidade de ser um erro de leitura), é durante o Inverno/Primavera que as águas se apresentam mais turvas à superfície. A partir dos 100 m (aproximadamente), a turbidez é constante até ao fundo da coluna de água (cerca de 0,01 FTU).
Figura 7 - Representação da variação sazonal dos factores físico/químicos (A e B – Temperatura; C e D – Salinidade; G e H – Oxigénio e I e J (página seguinte) – Turbidez) e biológicos (E – Fluorescência e F – Concentração de Clorofila a) em profundidade na coluna de água no banco submarino Condor durante os meses de Verão 2009 (“V_09”), Outono de 2009 (“O_09”) e Inverno/Primavera de 2010 (“I/P_10”).
4.1.2.2. Canal Faial - Pico

A estação do Canal Faial-Pico está localizada numa região de baixas profundidades (cf. Fig. 3) e como tal os perfis apresentados estendem-se apenas até aos 150 m (Fig. 8).

Durante o período de Inverno/Primavera a água está bem misturada até ao fundo, em mais do que um parâmetro: temperatura (± 15°C, Fig. 8 A); salinidade (< 36,1, Fig. 8 B); fluorescência (± 0,2 mg.m⁻³, Fig. 8 C); oxigénio (± 5,25 mL.L⁻¹, Fig. 8 E) e turbidez (± 0,02 FTU, Fig. 8 F). Quanto às outras duas épocas do ano em estudo observa-se uma termoclina muito suave aos 40 m no Verão e aos 30 m no Outono. É de salientar que, a diferença da temperatura à superfície entre as estações de Outono e Verão com a estação de I/P_10 é bastante elevada (cerca de 4°C). Não existem haloclinas evidentes nos vários períodos de estudo, no entanto ao longo de toda a coluna de água a salinidade é mais elevada no Verão do que no resto do ano (Fig. 8 B). Essa diferença é mais acentuada à superfície (cerca de 0,2), o que provavelmente é uma consequência do aumento da insolação associada ao agravamento também dos processos de evaporação. A DCM nesta estação observa-se perto dos 40 m no Verão e dos 25 m no Outono (Fig. 8 C) (valor que se pode confirmar pelas análises laboratoriais efectuadas para esta estação, Fig. 8 D).

No Verão observa-se um máximo de oxigénio sensivelmente aos 25 m de profundidade (Fig. 8 E). No Outono é possível distinguir ainda um máximo aos 30 m de profundidade se bem que, muito menos pronunciado. Abaixo desses valores máximos o oxigénio diminui em profundidade. Durante o período de Inverno/Primavera o oxigénio dissolvido não varia ao
longo da coluna de água, não parecendo ser a sua distribuição afectada por processos biológicos e de acordo com os resultados verificados para o mesmo período em termos de fluorescência (cf. Fig. 8 C). Por último, a turbidez é máxima também junto à DCM, com excepção do valor de superfície no Verão, o qual se apresenta bastante mais elevado (0,068 FTU) (Fig. 8 D).

Figura 8 - Representação da variação sazonal dos factores físico/químicos (A – Temperatura; B – Salinidade; E – Oxigénio e F – Turbidez) e biológicos (C – Fluorescência e D – Concentração de Clorofila a) em profundidade na coluna de água no canal Faial – Pico, durante os meses de Verão 2009 (“V_09”), Outono de 2009 (“O_09”) e Inverno/Primavera de 2010 (“I/P_10”). A ausência de dados na figura D deve-se ao facto de ter havido problemas na recolha de águas no Verão e um erro na análise no Inverno/Primavera.
4.2 Caracterização das Comunidades Planctónicas

4.2.1. Variação Sazonal de Fitoplâncton vs Zooplâncton

Diagramas de extremos e quartis fornecem informação útil sobre a localização e a dispersão das abundâncias de fito e de zooplâncton nas várias épocas de estudo (Fig. 9 A e B, respectivamente). No Verão e Outono de 2009 os valores de abundância de fitoplâncton distribuem-se no máximo até cerca de 5000 células.L\(^{-1}\) enquanto que no Inverno/Primavera de 2010 estes quase que triplicam, atingindo valores de cerca de 13200 células.L\(^{-1}\). De facto, a mediana na Primavera é superior ao 3º quartil de qualquer um dos outros meses e é também neste período que a dispersão de fito é maior. No que se refere aos resultados de zooplâncton para 2009 constata-se que Março é o mês de maior abundância (2,4 indivíduos.L\(^{-1}\)), tendo a maioria das amostras uma abundância acima da mediana e uma dispersão de valores de abundância muito mais elevados que nos restantes meses. Nos restantes 3 meses o máximo é mais elevado em Junho com cerca de 1,1 indivíduos.L\(^{-1}\). Foram registados alguns outliers por corresponderem a valores de abundância muito diferentes dos encontrados nas restantes amostras. Em geral, a abundância e dispersão de zooplâncton diminui da Primavera para o Inverno.

Nos Anexos B e C podem encontrar-se respectivamente, a listagem das espécies de fitoplâncton e a dos grupos taxonómicos de zooplâncton registados. Foram classificados 67 géneros e espécies de fitoplâncton, assim como 5 grupos menos específicos e 2 grupos não contabilizados. Quanto ao zooplâncton, registou-se um total de 31 grupos taxonómicos entre a ordem e o filo e 1 género específico (Pleurommama sp.).
Figura 9 – Diagramas de extremos e quartis (Boxplot) representativos da variação sazonal da abundância de fitoplâncton (em A) e de zooplâncton (em B). Os extremos inferiores e superiores representam respectivamente, o mínimo e o máximo da amostra. A barra central de cada caixa representa a mediana e os extremos da caixa, respectivamente o 1º e 3º quartis. Os períodos do ano respectivos a cada boxplot são: 1 – Verão de 2009 (“V_09”), 2 – Outono de 2009 (“O_09”) e 3 – Inverno/Primavera de 2010 (“I/P_10”), em A e 1 – Primavera_Março de 2009 (“P_Mar09”), 2 – Verão_Junho de 2009 (“V_Junh09”), 3 – Verão_Agosto de 2009 (“V_Ago09”) e 4 – Outono_Novembro de 2009 (“O_Nov09”), em B.

4.2.2. Fitoplâncton

4.2.2.1. Variação Espacial

A abundância dos três grupos de fitoplâncton dominantes nas amostras analisadas neste estudo, nos três períodos do ano considerados e em profundidade, está representada na Fig. 10. As diatomáceas no período V_09 são mais abundantes aos 75 m de profundidade, enquanto no período O_09 têm maior abundância nas estações do Condor entre os 50 e os 75 m, atingindo no entanto 5380 células.L⁻¹ aos 25 m na estação do canal Faial – Pico (Fig. 10 A). No Inverno/Primavera (I/P_10) as diatomáceas atingem abundâncias quatro vezes superiores às anteriormente referidas, entre os 25 e os 50 m de profundidade, embora a estação E localizada a SE do Condor (cf. Fig. 3) apresente um segundo pico de abundância aos 75 m. É interessante verificar que também aqui, com exceção da estação do canal aonde isso não é evidente, os máximos das diatomáceas seguem por perto as DCM’s referentes aos três períodos de tempo (cf. Fig. 7 E) ou seja, os máximos das diatomáceas descem em profundidade durante os períodos de Verão e Outono e sobem durante o período de Inverno/Primavera. Igualmente, é evidente que em todos os períodos do ano, a estação D localizada no topo do Condor (cf. Fig. 3) apresenta valores mais baixos em média do que

27
todas as outras estações. No que se refere aos dinoflagelados (Fig. 10 B), constata-se que os maiores níveis de abundância são atingidos no período I/P_10 (730 células.L\(^{-1}\)) na estação D a 100 m da superfície. No Verão, os picos de abundância observam-se entre a superfície e os 100 m de profundidade e as estações E, F e G (localizadas a SO, O e N do topo do Condor, cf. Fig. 3) apresentam dois picos de abundância. O pico máximo registou-se também na estação do topo do Condor aos 50 m de profundidade (300 células.L\(^{-1}\)). No início do período primaveril observam-se dois picos de dinoflagelados nas estações D (topo), E (Sudoeste do Condor), F (Oeste do Condor) e H (Norte do Condor). Quanto à riqueza em cocolítóforos pode observar-se que estes não ultrapassam as 1400 células.L\(^{-1}\) em nenhum das épocas de estudo. No Verão, o pico de cada estação encontra-se entre os 50 e os 75 m, no Outono entre os 25 e 75 m e no Inverno/Primavera encontra-se uma grande variação dos máximos de cada estação até aos 100 m de profundidade. Tal como para os dinoflagelados, ocorrem dois picos de abundância nas estações C (Este do Condor), D, E, F e H.
Figura 10 – Representação dos perfis de diatomáceas (em A), de dinoflagelados (em B) e de cocolitóforos (em C) em profundidade. Os gráficos de cima correspondem à estação do Verão de 2009 (“V_09”), os do meio ao Outono de 2009 (“O_09”) e os de baixo ao Inverno/Primavera de 2010 (“I/P_10”). Para localizar as estações A a H no mapa cf. Fig. 3.
4.2.2.2. Variação Sazonal e Local

A comparação da abundância média na vertical dos três principais grupos de fitoplâncton (diatomáceas, dinoflagelados e cocolitóforos) entre as estações localizadas dentro da área Condor permite uma melhor interpretação sobre as diferenças encontradas entre uma área de banco submarino e uma área costeira de canal entre ilhas (Fig. 11). Durante o Verão só existem registos de superfície no canal Faial – Pico, por isso não é possível fazer-se uma comparação entre esta e a média do Condor para a referida época do ano. No entanto, pode verificar-se que o máximo de diatomáceas (Fig. 11 A) no Condor no Verão observa-se à superfície e aos 75 m, o dos dinoflagelados (Fig. 11 B) localiza-se aos 50 m e o dos cocolitóforos (Fig. 11 C) igualmente aos 75 m de profundidade. Comparando as duas zonas para o período do Outono, constata-se que a estação do canal tem maiores abundâncias de diatomáceas (5380 células.L⁻¹) e de dinoflagelados (373 células.L⁻¹) do que o Condor, sendo o máximo de diatomáceas encontrado aos 25 m no canal e aos 50 m (460 células.L⁻¹) no Condor. Por seu turno, a abundância de dinoflagelados é máxima em ambos os locais (canal e Condor, este último com 105 células.L⁻¹) também aos 25 m. Tal como as diatomáceas, os cocolitóforos são mais abundantes a 25 m de profundidade na estação do canal (645 células.L⁻¹) e a 50 m no Condor (743 células.L⁻¹). Durante o Inverno/Primavera a abundância de diatomáceas é máxima aos 25 m no Condor (7237 células.L⁻¹) e mais elevada aos 50 m no canal (9800 células.L⁻¹), decrescendo de seguida e apresentando um novo aumento aos 150 m entre ilhas. Os dinoflagelados são mais abundantes no Condor, o qual apresenta dois máximos (373 células.L⁻¹ aos 25 m e 377 células.L⁻¹ aos 100 m), enquanto a estação do canal apresenta um único máximo aos 100 m (240 células.L⁻¹). Por fim, os cocolitóforos no Inverno/Primavera apresentam dois máximos em ambos os locais de análise, sendo que no Condor esses máximos são visíveis aos 25 m (645 células.L⁻¹) e aos 75 m (700 células.L⁻¹) e no canal a 5 m da superfície (870 células.L⁻¹) e a 100 m de profundidade (1130 células.L⁻¹).
Figura 11 – Representação dos três principais grupos de fitoplâncton em função da profundidade nas zonas em estudo (A – Diatomáceas; B – Dinoflagelados e C – Cocolitóforos). As linhas a cheio representam a média das estações dentro da área do Condor e as linhas a tracejado indicam a estação do canal entre ilhas.

A similaridade ao nível da composição específica entre cada amostra foi estudada para cada um dos três factores: época do ano, local e direcção (Fig. 12 A a C, respectivamente) utilizando para isso modelos de distância espacial como forma de representação de dados de proximidade, formando desta forma grupos dentro de cada um dos factores mencionados. Os resultados desta análise mostram não haver diferenças significativas na composição específica entre as épocas do ano (Fig. 12 A), embora as amostras do Inverno/Primavera sejam mais similares entre si, com a distinta formação de um grupo. Nos outros dois períodos existe maior dispersão entre as amostras, principalmente no Outono. Em termos de similaridade entre localizações (Fig. 12 B), observa-se uma grande dispersão dentro do Condor e maior proximidade “Fora” do mesmo, embora a estação B_1291 aos 5 e 25 m se distinga das restantes. Quanto ao último factor em estudo, “direcção” (Fig. 12 C) constata-se que as estações a Noroeste (NE) do topo do banco são
muito semelhantes entre si. Depois, embora haja alguma dispersão é ainda possível encontrar alguma relação entre as amostras do topo do Condor, bem como a Oeste do mesmo.

![Diagrama A](image1)

![Diagrama B](image2)

![Diagrama C](image3)

Figura 12 – Representação do escalonamento multidimensional (MDS) baseada na similaridade Bray-Curtis relativamente à composição da comunidade fitoplanctónica nas diferentes épocas do ano (A), locais de amostragem (B) e tendo em conta a direcção das estações comparativamente ao topo do banco submarino (C). Neste último caso os triângulos azuis (C) representam o topo do banco, os círculos a cor-de-rosa (N) a direcção Norte, os quadrados vermelhos (SO) a direcção Sudoeste, os círculos amarelos (O) a direcção Oeste, os triângulos verdes (E) a direcção Este e as estrelas a negro (NE) a direcção Nordeste.

A Tabela II revela os resultados obtidos através de análises de similaridade (ANOSIM) que testaram a seguinte hipótese nula: “Não existem diferenças significativas na composição específica entre as épocas do ano, local e direcção em estudo”. Através do valor da medida comparativa do grau de separação das amostras e da grande significância da estatística R podemos aceitar ou rejeitar a hipótese nula. Assim sendo, através do teste global e da comparação entre os pares podemos verificar que existem diferenças significativas na composição específica dentro das épocas do ano e entre as épocas do ano, assim como dentro das direcções. Contudo, não se rejeita a hipótese nula para o factor “Local”, não existindo assim diferenças significativas dentro e entre os dois grupos, bem como entre as várias direcções.
Tabela II – Resultados obtidos para o teste global e para o teste de comparação entre os pares da Análise de Similaridade (ANOSIM), com valores de estatística R (baseada nos ranks de similaridade) e níveis de significância para os factores “Época do Ano”, “Local” e “Direcção”. A medida comparativa do grau de separação das amostras está representada por R.

<table>
<thead>
<tr>
<th>Teste Global</th>
<th>Época do Ano</th>
<th>Local</th>
<th>Direcção</th>
</tr>
</thead>
<tbody>
<tr>
<td>R Global</td>
<td>0,438</td>
<td>-0,056</td>
<td>0,121</td>
</tr>
<tr>
<td>Nível de Significância (%)</td>
<td>0,1</td>
<td>81,8</td>
<td>0,1</td>
</tr>
<tr>
<td>Nº Permutações</td>
<td>999</td>
<td>999</td>
<td>999</td>
</tr>
<tr>
<td>Nº de Permutações > R Global</td>
<td>0</td>
<td>817</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grupos</th>
<th>Estatística R</th>
<th>Nível de Significância %</th>
<th>Permutações Possíveis</th>
<th>Permutações Actuais</th>
<th>Nº permutações > R observado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teste por pares - Época do Ano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_09, O_09</td>
<td>0,169</td>
<td>0,1</td>
<td>Muitas</td>
<td>999</td>
<td>0</td>
</tr>
<tr>
<td>V_09, I/P_10</td>
<td>0,617</td>
<td>0,1</td>
<td>Muitas</td>
<td>999</td>
<td>0</td>
</tr>
<tr>
<td>O_09, I/P_10</td>
<td>0,478</td>
<td>0,1</td>
<td>Muitas</td>
<td>999</td>
<td>0</td>
</tr>
<tr>
<td>Teste por pares - Direcção</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E, C</td>
<td>0,116</td>
<td>4,1</td>
<td>30421755</td>
<td>999</td>
<td>40</td>
</tr>
<tr>
<td>E, SO</td>
<td>-0,026</td>
<td>70,5</td>
<td>9657700</td>
<td>999</td>
<td>704</td>
</tr>
<tr>
<td>E, O</td>
<td>0,073</td>
<td>6,3</td>
<td>9657700</td>
<td>999</td>
<td>62</td>
</tr>
<tr>
<td>E, N</td>
<td>-0,007</td>
<td>48,1</td>
<td>548354040</td>
<td>999</td>
<td>480</td>
</tr>
<tr>
<td>E, NE</td>
<td>0,078</td>
<td>15,2</td>
<td>548354040</td>
<td>999</td>
<td>151</td>
</tr>
<tr>
<td>C, SO</td>
<td>0,121</td>
<td>1</td>
<td>145422675</td>
<td>999</td>
<td>9</td>
</tr>
<tr>
<td>C, O</td>
<td>-0,001</td>
<td>42,7</td>
<td>145422675</td>
<td>999</td>
<td>426</td>
</tr>
<tr>
<td>C, N</td>
<td>0,115</td>
<td>1,9</td>
<td>Muitas</td>
<td>999</td>
<td>18</td>
</tr>
<tr>
<td>C, NE</td>
<td>0,35</td>
<td>0,1</td>
<td>Muitas</td>
<td>999</td>
<td>0</td>
</tr>
<tr>
<td>SO, O</td>
<td>0,048</td>
<td>12,1</td>
<td>20058300</td>
<td>999</td>
<td>120</td>
</tr>
<tr>
<td>SO, N</td>
<td>0,029</td>
<td>28</td>
<td>Muitas</td>
<td>999</td>
<td>279</td>
</tr>
<tr>
<td>SO, NE</td>
<td>0,148</td>
<td>1,5</td>
<td>Muitas</td>
<td>999</td>
<td>14</td>
</tr>
<tr>
<td>O, N</td>
<td>0,083</td>
<td>6,6</td>
<td>Muitas</td>
<td>999</td>
<td>65</td>
</tr>
<tr>
<td>O, NE</td>
<td>0,256</td>
<td>0,1</td>
<td>Muitas</td>
<td>999</td>
<td>0</td>
</tr>
<tr>
<td>N, NE</td>
<td>0,196</td>
<td>0,1</td>
<td>Muitas</td>
<td>999</td>
<td>0</td>
</tr>
</tbody>
</table>

O dendograma resultante da análise de classificação (“Cluster”) para os organismos fitoplanctónicos revela o agrupamento das estações em 13 grupos com diferenças significativas. Apenas as amostras do período de Inverno/Primavera aparentam pertencer a um grupo completamento distinto (à excepção da estação F_1311 aos 5 m e da estação H_1320 aos 5 e 100
m de profundidade), enquanto no Verão e Outono verifica-se grande mistura das várias estações nos restantes grupos sem diferenças significativas (Fig. 1 do Anexo B).

Os principais taxa responsáveis pela semelhança de cada grupo (época do ano e local de amostragem) e os responsáveis pelas diferenças existentes na comparação entre grupos são obtidos através de uma análise SIMPER (cf. Anexo B). Os três principais taxa responsáveis pela semelhança dentro de cada época do ano e local de amostragem são os dinoflagelados NI, *Pseudo-nitzschia* sp. e cocolitóforos NI no Verão; *Ophiaster* sp., *Umbilicosphaera sibogae*, e *Rhabdosphaera* sp. no Outono; *Ophiaster* sp., *Chaetoceros* sp. e *Dictyocha fibula* no Inverno/Primavera; *Ophiaster* sp., cocolitóforos NI e *Solenicola setigera* no Condor; e *Chaetoceros* sp., *Ophiaster* sp. e *Guinardia striata* “Fora” do Condor (Tabela I e III do Anexo B). Quanto à dissimilaridade, os taxa responsáveis pelas diferenças existentes entre os vários grupos são *Pseudo-nitzschia* sp., *Ophiaster* sp. e *Chaetoceros* sp. em V_09 & O_09; *Chaetoceros* sp., *Ophiaster* sp. e *Dictyocha* sp. em V_09 e I/P_10; *Chaetoceros* sp., *Dictyocha fibula* e *Dictyocha* sp. em O_09 e I/P_10; e *Chaetoceros* sp., *Guinardia striata* e *Asterionellopsis* sp. em Condor & Fora (Tabela II e IV do Anexo B).

Com o intuito de perceber quais as variáveis ambientais que melhor explicam os padrões biológicos observados realizou-se a análise BIOENV da rotina BEST. No entanto, nenhuma das variáveis consideradas em conjunto ou sozinhas apresentam grande correlação, sendo que a temperatura é a que tem maior correlação com os dados da matriz biológica (correlação de 0,238) e é, portanto, a que melhor explica os resultados obtidos (Tabela V do Anexo B).

4.2.2.3. Diversidade taxonómica e Abundância do fitoplâncton

4.2.2.3.1. Sazonal

Na Fig. 13 A está representada para cada estação do ano às diferentes profundidades o índice de rarefação (*Rarefaccion Diversity Index*) E_{100}. Verifica-se que no Verão esse número aumenta até aos 50-75 m de profundidade (13 grupos taxonómicos), a partir do qual começa a diminuir. No Outono, a distribuição é semelhante, havendo pouca variação entre os 25 e os 75 m, com um máximo de 11 taxa e notando-se um novo aumento aos 150 m. Quanto ao período I/P_10, o número de taxa encontrados aumenta nos primeiros 50 m da coluna de água (até 11 taxa).
As Figs. 13 B, C e D apresentam uma comparação do número de grupos taxonómicos encontrados a cada profundidade de estudo com a fluorescência, concentração de Chl a e de oxigénio, respectivamente, medidos nos mesmos extractos da coluna de água. Em B é possível observar um desfasamento de 25 m entre o máximo de taxa encontrado e o máximo de fluorescência na estação do Inverno/Primavera sendo a fluorescência encontrada 25 m antes do número máximo de taxa, no entanto, no Verão e no Outono, ambos os máximos são encontrados à mesma profundidade (50 m). Quanto à concentração de clorofila medida para cada profundidade (em C) podemos verificar que no Verão e no Outono os valores máximos são coincidentes, contudo para o Inverno/Primavera não é possível fazer uma afirmação consistente, uma vez que não foi possível medir o valor de clorofila aos 25 m. Por fim, com respeito à concentração de oxigénio em cada extracto de profundidade, a concentração máxima é encontrada aos 25 m no Inverno/Primavera enquanto o número mais elevado de taxa se detectou aos 50 m. No Verão e Outono, por sua vez, ambos apresentam perfis semelhantes.

Figura 13 – Representação em A dos perfis da média dos índices E_{100} presentes em cada profundidade para cada época de estudo (Verão de 2009 - “V_09”; Outono de 2009 - “O_09” e Inverno_Primavera de 2010 - “I/P_10”). Em B, C e D estão representados respectivamente, os valores de fluorescência, da concentração de Chl a e de oxigénio (a tracejado) em função da referida diversidade em profundidade.
As curvas de dominância (i.e. os rankings cumulativos da abundância em função do ranking de espécies) mostram que, quanto mais elevada for uma curva, menor a diversidade existente e maior a dominância de algumas espécies, revelando assim a existência de espécies dominantes (Fig. 14). Assim sendo, o período I/P_10 apresenta uma curva sempre superior à dos períodos V_09 e O_09, apresentando uma espécie com abundância acima de 40 % e, de forma geral, menor diversidade na composição específica do que as outras épocas. No Verão e no Outono, por sua vez, as curvas de dominância são muito semelhantes e, embora as abundâncias de cada espécie sejam menores do que no Inverno/Primavera, o número de taxa encontrado é superior.

Figura 14 – Representação das curvas de dominância para cada estação do ano (Verão de 2009 - “V_09”, Outono de 2009 - “O-09” e Inverno/Primavera de 2010 - “I/P_10”) em função de um ranking de espécies.
Nas Figs. 15 e 16 estão representados os valores de abundância dos três taxa mais abundantes e dos considerados menos abundantes (com representação superior a 0,5 %) encontrados no banco submarino Condor e no canal Faial – Pico, respectivamente.

Enquanto que no Condor, o grupo dos pequenos dinoflagelados é dos mais abundantes nas três épocas de estudo, na estação do canal este grupo apenas domina no Verão. O gênero *Chaetoceros* sp. corresponde a 40 % do total de fitoplâncton encontrado no Inverno/Primavera e no canal é dominante nas três épocas. No entanto, deve salientar-se que nos resultados do Condor estão incluídas seis estações de amostragem, enquanto que os resultados do canal dizem respeito apenas a uma estação. Outros géneros comuns no grupo dos taxa mais abundantes são o *Pseudo-nitzschia* sp., que domina no Verão e Outono no Condor e no Outono no canal, *Asterionellopsis* sp., que corresponde a cerca de 15 % no I/P_10 nos dois locais considerados e *Ophiaster* sp. no Outono no Condor e no Inverno/Primavera no canal. De resto, a outra espécie que se destaca no Condor é a *Guinardia delicatula* e no canal a *Guinardia striata* e *Pseudoguinardia recta* (Fig. 15A e 16A).
Figura 15 – (A) Representação da percentagem dos organismos mais abundantes de fitoplâncton no Condor, assim como dos menos abundantes (B) no Verão de 2009 - “V_09”, (C) Outono de 2009 - “O_09” e (D) Inverno/Primavera de 2010 - “I/P_10”.

A

B

C

D

- Guinardia delicatula
- Asterionellopsis sp.
- Ophiaster sp.
- Chaetoceros sp.
- Pseudo-nitzschia
- Pequenos dinoflagelados
- Outros

V_09

- Calcidiscus leptoporus
- Calciosolenia murrayi
- Cerataulina pelagica
- Ceratium furca
- Ceratium fusus
- Cladophysis brachiolata
- Coccolithoforo NI
- Cylindrotheca closterium
- Dactylosolen mediterraneus
- Diatomácea pinolada
- Dictyocha fibula
- Dinoflagelado NI
- Grupo Thalassionema
- Guinardia delicatula
- Guinardia striata
- Gyrodinium fusiforme

O_09

- Hemiaulus hauckii
- Proboscia alata
- Pseudoguinardia recta
- Pseudo-nitzschia sp.
- Solenicola setigera
- Thalassionema nitzschioides
- Umbilicosphaera sibogae
- Asterionellopsis sp.
- Chaetoceros sp.
- Leptocylindrus sp.
- Protoperidinium sp.
- Thalassiosira sp.
- Dictyocha sp.
- Michaelsarsia sp.
- Ophiaster sp.
- Rhabdiosphaera sp.
- Rhabdosphaera sp.
Figura 16 – (A) Representação da percentagem dos organismos mais abundantes de fitoplâncton no canal Faial - Pico, assim como dos menos abundantes (B) no Verão de 2009 – “V_09”, (C) Outono de 2009 - “O_09” e (D) Inverno/Primavera de 2010 - “I/P_10”.
Nas Figs. 15 e 16 B, C e D (acima) podemos perceber quais são as espécies mais representadas dos grupos considerados menos abundantes nos vários períodos de estudo. A observação em simultâneo de ambas as figuras permite ter-se a percepção de que o Condor apresenta maior número de espécies do que a estação entre ilhas, sendo no entanto o período I/P_10 o que apresenta menor diversidade no geral. Enquanto que no Verão (em B) as duas espécies mais representativas no banco submarino são Chaetoceros sp. e Ophiaster sp., no canal são Pseudo-nitzschia sp. e Hemiaulus hauckii. No Outono (em C), as espécies consideradas menos abundantes têm aproximadamente a mesma percentagem, embora no canal exista uma que se destaca, o cocolitóforo Umbilicosphaera sibogae. Por fim, no Inverno/Primavera (em D), as espécies que estão mais representadas no Condor são Ophiaster sp. e Guinardia striata e no canal, para além da Guinardia striata, também os pequenos dinoflagelados e Thalassiosira sp..

No Anexo B (Fig. 2 e 3) apresentam-se algumas fotografias dos géneros e espécies mais representativos e menos frequentes no Condor e no canal Faial – Pico.

4.2.2.3.2. Em Profundidade

A abundância máxima de fitoplâncton encontrada no verão situa-se aos 75 m de profundidade, no Outono entre os 25 e os 50 m e no Inverno/Primavera aos 25 m (Fig. 17). Aos 150 m a abundância de fitoplâncton reduz-se significativamente, excepto no período I/P_10. Estes resultados parecem concordar com os resultados obtidos para a clorofila a (cf. Fig. 7F), apresentando uma correlação elevada entre ambos os resultados (i.e. r=0,884).
Figura 17 –Representação da variação da abundância de fitoplâncton aos vários níveis de profundidade durante as três estações do ano em estudo (Verão de 2009 - “V_09”, Outono de 2009 - “O_09” e Inverno/Primavera de 2010 - “I/P_10”). A abundância (célula.L$^{-1}$) é representada pelo diâmetro dos círculos, numa escala linear.

A representação das curvas de dominância do fitoplâncton para os diferentes extractos de profundidade (Fig. 18) permite constatar que os extractos que possuem menor diversidade e, consequentemente, maior dominância são os de 5, 25 e 150 m (com uma espécie superior a 40%). Assim sendo, são as amostras menos profundas e menos superficiais (50 a 100 m) que mostram maior diversidade na composição específica e também menor abundância das diferentes espécies encontradas.

Figura 18 - Representação das curvas de dominância para cada nível de profundidade em estudo (D5, D25, D50, D75, D100 e D150 correspondendo a 5, 25, 50, 75, 100 e 150 m de profundidade, respectivamente) em função de um ranking de espécies.
No que concerne às espécies mais abundantes em profundidade (Fig. 19) para a média das estações do Condor (em A) e para a estação do canal Faial – Pico (em B) verifica-se que as espécies encontradas em ambas as zonas são muito semelhantes, com maior abundância de *Chaetoceros* sp. em todos os extractos e também alguma representação de pequenos dinoflagelados, *Ophiaster* sp. e *Asterionellopsis* sp.. É preciso ter em atenção que, devido ao facto de estes gráficos corresponderem a uma média anual por profundidade, a grande representação de algumas espécies em determinadas estações do ano (como o género *Chaetoceros* sp. no Inverno/Primavera) podem ser responsáveis pelas elevadas abundâncias apresentadas na referida figura. As espécies que se destacam como diferentes no Condor e no canal são a *Pseudo-nitzschia* sp. e *Guinardia delicatula* no primeiro (em A) e a *Pseudoguinardia recta* no segundo (em B).

Figura 19 – Representação das espécies mais abundantes de fitoplâncton nos vários níveis de profundidade no banco submarino Condor (A) e no canal Faial – Pico (B).
4.2.2.3.3. Local

A maior abundância fitoplanctónica (Fig. 20 A a C) é encontrada no Inverno/Primavera (entre as 320 e as 12173 células.L⁻¹), em C, e a menor no Outono (até às 1210 células.L⁻¹, embora atinja as 2958 células.L⁻¹ no canal), em B. De um modo geral verifica-se que as estações mais próximas da costa (referentes ao local A, B e C) apresentam maior número de indivíduos fitoplanctónicos, assim como a estação a sudeste do topo do Condor (na zona considerada E) em Março de 2010. Através das médias das três épocas de estudo é possível obter uma avaliação anual da dispersão do fitoplâncton na região em estudo (Fig. 20D), verificando-se que as estações A, B, C e E são as que têm maiores valores de abundância (de 2959 a 6050 células.L⁻¹), tal como mencionado acima.
Figura 20 – Representação em ArcMap da abundância de fitoplâncton em cada local em estudo no (A) Verão de 2009, (B) Outono de 2009 e (C) Inverno/Primavera de 2010. (D) Representação das abundâncias médias anuais. Os números individuais dentro das caixas cinzentas correspondem ao número de profundidades utilizadas para a média de cada estação e os números (em A, B e C) e letras (em D) a negrito correspondem à identificação de cada estação.
4.2.3. Zooplâncton

4.2.3.1. Biomassa do zooplâncton

Na Fig. 21 está representada a biomassa dos organismos zooplanctónicos nos locais amostrados e respectiva interpolação para o banco submarino Condor e áreas circundantes. Durante o período diurno de Março (Fig. 21 A) só existem três estações com dados, pelo que a interpolação realizada apresenta logo à partida alguns problemas que podem, por seu turno, explicar a reduzida biomassa encontrada na região. A biomassa do zooplâncton é mais elevada durante a noite em Março (Fig. 21 B) e também em Junho (Fig. 21 C e D) e, para além do período diurno em Março, é mais baixa em Agosto e Novembro (Fig. 21 E a H). Em B nota-se que existe uma grande biomassa zooplanctónica dispersa por toda a região do banco, atingindo-se o máximo registado na estação mais próxima de costa (57,47 mg.m\(^{-3}\)). Em Junho de 2009 a biomassa máxima do zooplâncton é, também, encontrada durante a noite (52,49 mg.m\(^{-3}\), em C) e, curiosamente, a zona de menor concentração durante a noite é a que apresenta maiores valores de dia (48,89 mg.m\(^{-3}\), em D). Quanto a Agosto, a concentração de peso seco do zooplâncton não ultrapassa os 21,99 mg.m\(^{-3}\) durante o dia (Fig. 21 E) nem os 23,42 mg.m\(^{-3}\) durante a noite (Fig. 21 F). Por fim, no Outono (Novembro de 2009) é quando a abundância de zooplâncton registada é mais reduzida, não ultrapassando os 14,16 mg.m\(^{-3}\) (Fig. 21 H).
4.2.3.2. Variação Sazonal

A similaridade entre cada amostra foi estudada para cada uma das épocas do ano amostradas (Fig. 22) utilizando métodos de ordenação de distância espacial como forma de aferir os padrões biológicos existentes (cf. Fig. 12). Esta análise mostra que diferenças na composição específica entre as épocas formam quatro grupos distintos, correspondendo cada um a uma época do ano diferente. É possível verificar ainda que os meses correspondentes à época do Verão (Jun_09 e Ago_09) apresentam alguma mistura no escalonamento multidimensional (MDS) o que significa que existe uma certa similaridade na composição específica nestes dois períodos de estudo. Com respeito ao factor “Local” e “Direcção” mencionados para o fitoplâncton no ponto 4.2.2.2., não se observou a formação de grupos distintos para os organismos zooplanctónicos (resultados não apresentados).

Figura 22 - Representação do escalonamento multidimensional (MDS) baseada nas similaridades de Bray-Curtis relativamente à composição da comunidade zooplanctónica nas diferentes épocas do ano e para a região em estudo.

A Tabela III apresenta os resultados obtidos através da análise de similaridade (ANOSIM) efectuada para a época do ano. Testou-se a seguinte hipótese nula (H0): “Não existem diferenças significativas entre as épocas do ano em estudo em relação à composição taxonómica”. Observando a informação dada pelo teste global podemos verificar que se rejeita a H0 pois existem diferenças significativas dentro das épocas e entre as épocas do ano. Os resultados
obtidos na comparação entre os pares comprovam o facto de se rejeitar a hipótese nula para a época do ano, uma vez que o R observado está para lá da zona de rejeição.

Tabela III - Resultados obtidos para o teste global e para o teste de comparação entre os pares da Análise de Similaridade (ANOSIM), com valores de estatística R (baseada nos ranks de similaridades) e níveis de significância para o factor “Época do Ano”.

<table>
<thead>
<tr>
<th>Grupos</th>
<th>Estatística R</th>
<th>Nível de Significância</th>
<th>Permutações Possíveis</th>
<th>Permutações Actuais</th>
<th>Nº de Permutações > R observado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ago, Jun</td>
<td>0,073</td>
<td>3,4</td>
<td>Muitas</td>
<td>999</td>
<td>33</td>
</tr>
<tr>
<td>Ago, Nov</td>
<td>0,313</td>
<td>0,1</td>
<td>471435600</td>
<td>999</td>
<td>0</td>
</tr>
<tr>
<td>Ago, Mar</td>
<td>0,643</td>
<td>0,1</td>
<td>4686825</td>
<td>999</td>
<td>0</td>
</tr>
<tr>
<td>Jun, Nov</td>
<td>0,386</td>
<td>0,1</td>
<td>471435600</td>
<td>999</td>
<td>0</td>
</tr>
<tr>
<td>Jun, Mar</td>
<td>0,467</td>
<td>0,2</td>
<td>4686825</td>
<td>999</td>
<td>1</td>
</tr>
<tr>
<td>Nov, Mar</td>
<td>0,491</td>
<td>0,1</td>
<td>817190</td>
<td>999</td>
<td>0</td>
</tr>
</tbody>
</table>

O dendograma resultante da análise de classificação (“Cluster”) para as estações analisadas para o zooplâncton mostra um agrupamento das estações em três grupos com diferenças significativas. As estações CP01_Noite do mês de Junho e CP07_Dia do mês de Novembro constituem um grupo completamente distinto das restantes (cf. Fig. 4 do Anexo C).

Os principais taxa responsáveis pela semelhança dentro de cada época do ano e os responsáveis pelas diferenças existentes na comparação entre épocas são obtidos através de uma análise SIMPER (cf. Anexo C). Os principais taxa responsáveis pela semelhança dentro de cada época do ano são, em todas elas, os Copepoda Calanoida e Copepoda Poecilostomatoida, bem como os Cladocera no verão (Junho e Agosto) (Tabela VI do Anexo). Quanto à dissimilaridade, os três grupos taxonómicos responsáveis pelas diferenças existentes entre cada época de amostragem são também os Copepoda Calanoida e Poecilostomatoida e os Cladocera, excepto para a relação...
Nov_09 (Novembro de 2009) e Mar_09 (Março de 2009) em que 90% da contribuição para a dissimilaridade é dada apenas pelos grupos Copepoda Calanoida e Copepoda Poecilostomatoida (Tabela VII do Anexo C).

Com o objectivo de perceber quais as variáveis ambientais que melhor explicam os padrões biológicos observados realizou-se o método BIOENV da rotina BEST. Tal como para o fitoplâncton, nenhuma das variáveis consideradas em conjunto ou sozinhas apresentam grande correlação, sendo que a concentração de feofitina \(a \) é a que tem maior correlação com os dados da matriz biológica (correlação de 0,144). No entanto, os dados respectivos à feofitina \(a \) e clorofila \(a \) apenas se referem a valores obtidos à superfície (Tabela VIII do Anexo C).

4.2.3.2. Diversidade taxonómica e Abundância do zooplâncton

4.2.3.2.1. Variação Sazonal

A variação do número de grupos taxonómicos ao longo do ano revela que o Verão (Junho e Agosto) é a estação do ano que apresenta maior diversidade (19 grupos taxonómicos distintos), enquanto a Primavera e o Outono (Março e Novembro, respectivamente) são as que têm menor diversidade (cerca de 16 taxa) (Fig. 23).

![Figura 23 – Representação do número total de taxa de zooplâncton registados nos quatro meses (Primavera_Março, “P_Mar_09”; Verão_Junho, “V_Jun_09; Verão_Agosto, “V_Ago_09”; e Outono_Novembro, “O_Nov_09”) do ano de 2009.](image-url)
As curvas de dominância (Fig. 24) referentes aos diferentes períodos em que se estudou o zooplâncton mostram que, por ordem da maior abundância e menor diversidade para menor abundância e maior diversidade na composição específica, estão os meses de Março, Novembro, Agosto e por último Junho, o que vem comprovar os resultados obtidos para a diversidade taxonómica (cf. Fig. 23). O mês de Março apresenta abundâncias de uma só espécie superiores a 70%, enquanto as de Junho estão apenas acima de 30%.

Na Fig. 25 estão representadas as percentagens de abundância dos taxa superiores a 4% (em A) e todos aqueles com abundâncias inferiores a esses 4% para o banco submarino Condor (de B a E).
Figura 25 - (A) Representação da percentagem dos organismos mais abundantes de zooplâncton no Condor, assim como dos menos abundantes (B) na Primavera_Março de 2009 - “Mar_09”, (C) Verão_Junho de 2009 - “Jun_09”, (D) Verão_Agosto de 2009 – “Ago_09” e (E) Outono_Novembro de 2009 - “Nov_09”.
Os grupos de organismos mais abundantes de zooplâncton são os Copepoda Calanoida e Poecilostomatoida, havendo também uma ligeira presença do grupo Cladocera (principalmente em Junho) e dos Chaetognata e Appendicularia (cf. Fig. 25 A). A participação dos referidos grupos de copépodes perfaz um mínimo de 65% em Junho e um máximo de 95% em Março.

Quanto aos grupos mais representativos dos considerados menos abundantes pode verificar-se que estes variam nos vários meses amostrados. Assim sendo, constata-se que em Março predomina um outro grupo de copépodes (Copepoda Cyclopoida) e um género de fácil identificação pertencente aos Copepoda Calanoida (*Pleuromamma* sp.), assim como os Chaetognata e as larvas de Bivalves (cf. Fig. 25 B). Em Junho, dominam também os Copepoda Cyclopoida, um grupo de organismos pertencente aos Radiolaria, as larvas de Bivalve, os Pteropoda e os Doliolida (cf. Fig. 25 C). Em Agosto, os que se destacam são os Appendicularia, Ostracoda, Euphasiacea e Doliolida (cf. Fig. 25 D) e em Novembro os Chaetognata, Ostracoda, Euphasiacea e *Pleuromamma* sp. (cf. Fig. 25 E).

No Anexo C (Fig. 5 e 6) apresentam-se algumas fotografias referentes aos grupos mais abundantes e aos menos frequentes na área em estudo.

4.2.3.2.2. Variação Diurna/Nocturna

Durante os vários meses de amostragem destacou-se o facto de haver uma clara dominância dos grupos de copépodes Calanoida e Poecilostomatoida tanto durante o dia como de noite (Fig. 26).

No mês de Março, observando os grupos menos representativos pode constatar-se um domínio dos Chaetognatha, Appendicularia, Doliolida e Siphonophorae no período diurno (Fig. 26 A) e dos Copepoda Cyclopoida, Euphasiacea, Larvas de Bivalve e *Pleuromamma* sp. no período nocturno (Fig. 26 B).

Em Junho, para além dos dois grupos anteriormente referidos, também a ordem Cladocera é bastante abundante em ambos os períodos (Fig. 26 C e D). Destacam-se durante o dia os Peteropoda, Radiolaria(?) e Doliolida (Fig. 26 C) e durante a noite uma maior abundância do grupo Chaetognatha e um claro aumento dos copépodes Cyclopoida (Fig. 26 D).
Durante o mês de Agosto, os Cladocerá e Chaetognatha estão bastante presentes, embora mais de dia do que de noite (Fig. 26 E e F). Também os organismos pertencentes aos grupos Appendicularia, Doliolida, Radiolaria(?) e Náuplio de Cirripede predominam no período diurno (Fig. 26 E), sobressaindo apenas os grupos Ostracoda, Euphasiacea e *Pleuromamma* sp. durante a noite (Fig. 26 F).

Em Novembro, o grupo Appendicularia destaca-se em ambos os períodos do dia, embora mais durante o diurno, assim como os Chaetognatha e Ostracoda (Fig. 26 G). De noite evidenciam-se os Euphasiacea e *Pleuromamma* sp. (Fig. 26 H).

Em geral, é interessante constatar que, para o mesmo mês, grupos taxonómicos com menos de 5% de ocorrência apresentam diferente diversidade do dia para a noite. Contudo, essa diferença não é tão observada nos grupos taxonómicos que aparecem nas amostras com percentagens superiores a 5%. Os resultados deste trabalho evidenciam igualmente que, com excepção do mês de Junho, a comparação dia/noite para os mesmos períodos do ano, mostra maior percentagem de organismos com menos de 5% de ocorrências durante os períodos nocturnos (Fig. 26).
4.2.3.2.3. Variação Local

A maior abundância de zooplâncton (Fig. 27 A a D) é encontrada em Março e em Junho atingindo cerca de 2,41 indivíduos.L⁻¹, enquanto nos restantes meses não se encontram mais de 0,82 indivíduos.L⁻¹ na zona do Condor. Ao contrário do verificado para o fitoplâncton, não se detecta um padrão de maior abundância zooplânctónica conforme maior a proximidade à costa. Consta-se que em todas as estações a média anual de abundância é de cerca 0,82 indivíduos.L⁻¹, excepto a estação CP13 que tem uma média menor (até 0,34 indivíduos.L⁻¹) (resultados não apresentados).
Figura 27 - Representação em ArcMap da abundância de zooplâncton em cada local em estudo em (A) Março, (B) Junho, (C) Agosto e (D) Novembro de 2009. Os códigos a negrito correspondem à identificação de cada local de estudo.
5. **Discussão**

5.1. **Caracterização Física e Biológica da Coluna de Água**

Os resultados do presente estudo revelam uma coluna de água bem misturada até aos 200 m de profundidade em termos de características físicas da água (principalmente temperatura e salinidade, mas também oxigénio dissolvido e turbidez) numa situação considerada primaveril (Março), mas que corresponde na realidade à fase terminal do Inverno para o local em estudo. Estudos realizados junto ao Faial mostram a mesma homogeneidade térmica vertical em Fevereiro (Silva, 2000) e na costa de Portugal Continental também para o período de Inverno/Primavera (Moita, 2001). No Verão torna-se evidente a estratificação da coluna de água em termos de temperatura, formando-se uma termoclina sazonal superficial muito evidente, tal como em Silva (2000), e um ligeiro aumento de salinidade (cerca de 0,24). Na estação do ano outonal ainda se verifica uma coluna de água estratificada, embora com uma termoclina mais profunda e um pico de salinidade bem evidente (36,14 aos 75 m) (cf. fig. 7). Segundo Moita (2001), a incidência solar é o factor que mais condiciona a estratificação térmica anual da camada superficial do oceano, o que vem a ser confirmado pelos nossos resultados. Devido à radiação solar ser mais forte no mês de Julho, tal como refere Morton *et al.* (1998), (mais 2 ºC do que em Novembro e mais 6 ºC do que em Março nos nossos resultados) a água superficial aquece e fica menos densa, mostrando uma termoclina muito acentuada e superficial. Nos meses de Inverno, com o arrefecimento atmosférico, a água do mar também arrefece à superfície, tornando-se mais densa. O aumento da intensidade média dos ventos durante esse período também contribui para aumentar a turbulência da água, pelo que, estes dois factores, arrefecimento da água e turbulência, contribuem para misturar melhor a camada de superfície. A termoclina sazonal diminui (no Outono) ou torna-se mesmo inexistente (no Inverno), com águas bem misturadas à superfície.

Com respeito à salinidade, nos primeiros 200 m de profundidade, não se observou uma variabilidade temporal acentuada encontrando-se esta sempre entre 36 e 36,25 com o máximo no Verão, o que se pode dever aos níveis de precipitação serem mais reduzidos e a evaporação da camada superficial causada pelas elevadas temperaturas atmosféricas ser superior nesta estação do ano. Em termos de variação espacial nas três épocas de estudo apenas a estação de amostragem situada sobre o topo do banco submarino Condor apresenta um perfil de salinidade
distinto das restantes durante o Verão, com a formação de uma haloclina bem pronunciada. Tal como em Silva (2000), os máximos de temperatura e salinidade foram obtidos na mesma estação do ano (Verão).

Comparando estes resultados obtidos para o oxigénio dissolvido na camada superficial da coluna de água com os obtidos por Moita (2001) na costa de Portugal continental, pode-se verificar que o máximo de oxigénio foi encontrado pela autora na Primavera e o mínimo no Outono, enquanto no presente trabalho os valores máximos de oxigénio se registaram no Verão. Moita (2001) refere ainda que se encontra normalmente uma associação entre os máximos de oxigénio dissolvido e os de clorofila a. No entanto, o facto de o pico de oxigénio não ter sido encontrado na mesma estação do ano que o pico de clorofila a, pode ter sido devido ao facto de a coluna de água em Março estar bastante misturada, não permitindo a formação de picos de oxigénio. Também o facto de em Março se ter verificado uma maior abundância de zooplâncton devido à maior disponibilidade de fitoplâncton pode ter contribuído para um maior consumo de oxigénio no referido mês, contribuindo assim para a baixa concentração de oxigénio dissolvido verificada.

Por fim, uma outra justificação para este facto deve-se à possibilidade de existir bastante picofitoplâncton (<2 µm) na água durante o mês de Julho, grupo esse que contribui significativamente para as concentrações de oxigénio dissolvido na água, mas não tanto para as concentrações de clorofila a, daí a menor concentração deste parâmetro no Verão (Dierssen, 2010). De facto, e segundo Marañón (2009), em águas oligotróficas domina o picoplâncton enquanto que nas de upwelling domina o microfitoplâncton, comprovando o anteriormente referido. Quanto ao mínimo obtido de oxigénio, este foi encontrado aos 700 m durante todo o ano. É a esta profundidade que o consumo de oxigénio pelos seres vivos é mais elevado, os processos fotossintéticos deixam de ocorrer e a decomposição da matéria orgânica, e consequente consumo de oxigénio, é também elevada (Childress & Seibel, 1998; Norihisa et al., 2000 & Deutsch et al., 2007). Abaixo desta camada e quanto maior a profundidade, maior a influência de águas frias polares ricas em oxigénio, fazendo-se notar um aumento do mesmo. O referido aumento resulta também da diminuição da temperatura da água e do simultâneo aumento da solubilidade do oxigénio. Com respeito à turbidez, apenas a estação H_1287 localizada a Norte do topo do banco no Outono apresentou um valor muito elevado comparativamente às restantes, o que pode ser resultante da maior formação de ondas de maré internas detectadas nesse local e maior mistura (turbulência na vertical) da coluna de água (Ana
Martins, comunicação pessoal). O aumento da mistura na água resulta da interacção entre a maré e a topografia.

A concentração do pigmento fotossintético clorofila \(a \) é considerada como um bom indicador (proxy) de fitoplâncton na coluna de água. Os resultados apresentados no capítulo anterior, obtidos por análise laboratorial e pela fluorescência medida in situ, mostram que, na profundidade da DCM, a concentração de clorofila \(a \) no Inverno/Primavera (0,2 mg.m\(^{-3}\) medidos em laboratório) atinge valores 4 vezes superiores aos do Verão (0,05 mg.m\(^{-3}\) medidos em laboratório). A DCM, apresenta uma variação de cerca de 50 m entre o Verão e a Primavera, localizando-se no Verão sensivelmente aos 75 m de profundidade, no Outono aos 50 m e no Inverno/Primavera aos 25 m. As ligeiras diferenças que se encontram (cf. Fig 7) entre a profundidade da DCM obtida in situ (medição directa e contínua recorrendo a um sensor fluorímetro) e a medida em laboratório (análises de águas) deve-se precisamente ao facto de em laboratório as análises serem realizadas a profundidades fixas, podendo falhar por vezes a real profundidade máxima obtida no perfil contínuo do fluorímetro. Quanto à comparação com estudos anteriores para a região dos Açores, a maioria refere-se à DCM encontrada no Verão. Gaard \textit{et al.} (2008) em Junho de 2004 detectaram uma DCM entre os 40 e 80 m de profundidade (entre 0,2 e 0,5 mg.m\(^{-3}\)); Head \textit{et al.} (2002) referem que a DCM se encontrou a mais de 100 m no Verão (Agosto de 1998) e entre 50 e 80 m na Primavera (Abril de 1999); Teira \textit{et al.} (2005) constataram que a clorofila máxima encontrada no Verão se localizava entre os 100 e 120 m e entre os 20 e os 40 m no Inverno. Por fim, Veldhuis & Kraay (2004) detectaram para o Atlântico Este subtropical uma DCM entre os 80 e os 130 m de profundidade no Verão (Agosto de 1996). A profundidade de clorofila máxima encontrada neste estudo durante o Verão está incluída no intervalo de profundidades referido por Gaard \textit{et al.} (2008) e no Inverno/Primavera está no intervalo referido por Teira \textit{et al.} (2005). Não obstante, em todos os estudos em que mais do que uma estação do ano foi amostrada, independentemente da localização em redor dos Açores, a DCM encontra-se sempre a maiores profundidades durante o período de Verão e a menores durante a Primavera, em concordância com os resultados deste estudo. Estas diferenças estacionais provavelmente resultam de uma combinação de vários factores, nomeadamente da maior intensidade da luz no Verão \textit{versus} Primavera e de factores associados (ex: efeito de sombra ou self-shading effect) e ainda, da rarefação de nutrientes à superfície no Verão.
associada ao aumento da estratificação da água à superfície, bem como a capacidade por parte das células fotosintéticas em aproveitar produtos regenerados (ex: amónia) na coluna de água.

5.2. Caracterização das Comunidades Planctónicas

O presente estudo permitiu-nos verificar que no monte submarino ao largo da ilha do Faial tanto a abundância de fito como a de zooplâncton são mais reduzidas nas estações do Verão (5000 células.L\(^{-1}\) de fito e 1,1 indivíduos.L\(^{-1}\) de zoo) e do Outono (3930 células.L\(^{-1}\) de fito e 0,46 indivíduos.L\(^{-1}\) de zoo) do que no Inverno/Primavera (13200 células.L\(^{-1}\) de fito e 2,41 indivíduos.L\(^{-1}\) de zoo). O máximo de ambas as comunidades foi assim encontrado durante o mês de Março. De facto, é também nesse mês que normalmente se inicia a Primavera em termos de produção devido ao aparecimento dos primeiros sinais que antecedem a ocorrência do *bloom* primaveril, sendo eles o facto de existirem condições óptimas em termos de luz e nutrientes, que contribuem para o desenvolvimento do fitoplâncton (Raimbault *et al.*, 1988 & Nogueira *et al.*, 2006). Não se pode no entanto considerar que a elevada abundância verificada corresponda ao pico do *bloom* de Primavera, uma vez que a coluna de água não apresentava ainda a estratificação necessária. O trabalho desenvolvido por Arístegui *et al.* (2009) refere que no monte submarino Sedlo (também ele situado no Nordeste do Atlântico, embora mais a Norte do Arquipélago dos Açores) o *bloom* de fitoplâncton ocorre entre Maio e Junho, coincidindo com o aumento da temperatura superficial do oceano e re-estabelecimento da termoclina após a mistura ocorrida no Inverno. Também estudos feitos por Savidge *et al.* (1995) no Nordeste do Atlântico mostraram a ocorrência de *bloom* de Primavera no mês de Maio. No trabalho efectuado por Neto *et al.* (2009) para a caracterização de massas de água na ilha Terceira, durante a Primavera (Maio de 2009) registaram-se entre 11000 e 26000 células de fitoplâncton por litro de água nas duas estações mais profundas e entre 8000 e 10000 no Verão (Julho) do mesmo ano, estando assim próximos dos nossos valores. O facto de esta amostragem ter coincidido com o período de Inverno/Primavera, leva portanto à dedução de que os valores máximos encontrados nesse período seriam provavelmente inferiores aos encontrados um mês depois na coluna de água.

Quanto ao zooplâncton, este caracteriza-se por aumentar a sua abundância como resposta mais rápida ou mais demorada ao aumento da produtividade primária (Richardson, 1985). Por estes resultados não se pode comparar directamente cada uma das comunidades no mês de Março.
porque os resultados de fitoplâncton foram obtidos em 2010 e os de zooplâncton em 2009, e estudos anteriores demonstram bem a variabilidade interanual da região no que se refere a mais do que um parâmetro (Bashmachnikov et al., 2004 & Martins et al., 2007). No entanto, a grande abundância de zooplâncton em Março em comparação com os restantes meses estudados mostra que havia muito mais fitoplâncton disponível no início de Março do que nos outros meses, o que se vêm a comprovar pela abundância de fitoplâncton obtida no ano seguinte. Assim como no nosso estudo, também no trabalho desenvolvido por Silva (2000) para a costa do Faial, se verificou que a maior abundância de zooplâncton foi encontrada em Março (0,813 indivíduos.L⁻¹ segundo Silva (2000) e 2,41 indivíduos.L⁻¹ pelos presentes resultados) e a menor no Verão (Julho – 0,058 indivíduos.L⁻¹ segundo Silva (2000) e 1,1 indivíduos.L⁻¹ nos presentes resultados). Contudo, no presente trabalho os valores de abundância obtidos são relativamente mais elevados do que em Silva (2000).

Quanto às biomassas determinadas para os produtores secundários no banco submarino em estudo, as concentrações mais elevadas foram registadas durante o período nocturno do mês de Março, chegando a atingir 57,47 mg.m⁻³ na estação mais próxima da ilha do Faial. Também no mês de Junho se obtiveram alguns valores de biomassa elevados, e foi durante a noite na estação CP01 que se registou a menor biomassa de zooplâncton (2,98 mg.m⁻³). Em Novembro não se obtiveram biomassas acima de 14,16 mg.m⁻³. De acordo com Silva (2000), a biomassa tende a aumentar na Primavera devido ao aumento da energia incidente e enriquecimento da zona eufótica, enquanto no Verão os valores tendem a diminuir com a depleção de nutrientes e consequente declínio de fitoplâncton. Tal como esperado, em comparação com outros estudos, a biomassa do zooplâncton nos primeiros 100 m da coluna de água é mais elevada durante o período noturno do que no diurno (Labat et al., 2009). A migração vertical do zooplâncton é um fenómeno bastante bem conhecido na literatura, contudo a explicação para a sua ocorrência é controversa, sendo a luz e a temperatura considerados os principais estímulos para a variação da posição na coluna de água de alguns grupos de zooplâncton (Nybakken, 2001). Outros factores incluem, a fuga à predação (Alvariño, 1967; Zaret & Suffern, 1976) e ainda o facto de grande parte dos organismos se alimentarem durante a noite (Angel & Pugh, 2000). A relação entre os valores de biomassa obtidos e a variação térmica no banco Condor (resultados não apresentados) permitiu destacar um padrão de acréscimo em biomassa zooplanctónica em zonas do Condor com temperaturas mais baixas nos primeiros 100 m da coluna de água, sugerindo também uma
possível influência do tipo predador (zooplâncton) / presa (fitoplâncton). É de facto, nos primeiros 100 m de água que a biomassa de fitoplâncton é maior (zona fótica) e águas mais frias podem reflectir locais de afloramento. De facto, resultados preliminares demonstram que o Condor apresenta condições oceanográficas bem distintas de águas adjacentes. Em particular, foram identificadas condições de forte mistura, juntamente com padrões locais do tipo upwelling/downwelling (afloramento/afundamento) intensos, e ainda pronunciadas estruturas de circulação fechada sobre o monte submarino Condor, resultantes também da assimetria das correntes de maré no local (Bashmachnikov et al., 2011).

Um factor a ter em consideração, no que se refere a estudos de zooplâncton é que nos arrastos os organismos gelatinosos podem estar subestimados porque, por serem seres frágeis, são facilmente destruídos pelas redes (particularmente algumas espécies de salpas (Angel & Pugh, 2000)). Um outro factor a ter em conta, principalmente em comparações dia/noite é o facto de alguns grupos de organismos zooplanctónicos terem maior facilidade em evitar a rede durante o dia (Alvariño, 1967; Angel & Pugh, 2000).

Para fazer uma comparação de biomassas com outros trabalhos foi necessário ter em conta as semelhanças entre as metodologias utilizadas e as características do local em estudo. Muitos autores utilizam diferentes medidas de biomassa, pelo que de modo a converter cada resultado para a unidade de peso seco utilizada recorreu-se às fórmulas de Wiebe (1988). Num estudo realizado durante o ano de 2001, para uma região entre giros no Nordeste do Atlântico, por Labat et al. (2009) a biomassa zooplanctónica encontrava-se entre 10,4 e 13,2 mg.m\(^{-3}\) em Abril e entre 6,2 e 7,1 mg.m\(^{-3}\) em Setembro. Estes resultados encontram-se dentro dos intervalos obtidos para o mês de Março e Novembro, respectivamente.

O facto de o mês de Junho ter biomassas muito elevadas nas estações CP01 e CP05 durante o período diurno e muito reduzidas no nocturno pode ter ocorrido por haver grande disponibilidade de alimento nesses locais, contudo as concentrações de clorofila \(a\) registadas nessas estações são iguais ou mais elevadas de noite do que de dia (resultados não apresentados). Analisando, no entanto, as imagens de satélite (resultados não apresentados) para o período diurno no Condor detecta-se realmente um acréscimo de clorofila \(a\) a Sudeste do banco quatro dias antes da amostragem, o que poderá explicar o aumento de zooplâncton observado, seguido de um decréscimo de clorofila \(a\) observado cinco dias depois da amostragem. Sendo que, como referido
anteriormente, se registam maiores biomassas de zooplâncton em águas mais frias, provavelmente a temperatura pode ter tido também influência nestas duas estações.

Quanto às variações dos grupos taxonómicos entre o dia e a noite, Alvariño (1967) registou nos finais de Agosto um maior número de organismos dos grupos Chaetognatha e Siphonophorae nos primeiros 100 metros da coluna de água durante o dia do que de noite. Também no presente trabalho, estes dois grupos aparecem de forma mais abundante no período diurno, não só em Agosto, mas também em Março e Novembro. De acordo com Angel & Pugh (2000) o grupo taxonómico que apresenta maior disparidade entre ambos os períodos por evitar a rede durante o dia é o dos Eufasiáceos (para a época Primavera/Verão) e, de facto, nos nossos resultados a abundância deste grupo é sempre mais elevada no período nocturno. Os Pteropoda são conhecidos por se agruparem em grandes grupos, assim como as medusas, podendo afectar as estimações dos padrões de migração por nem sempre serem capturados em grupos (Angel & Pugh, 2000). No entanto, no presente trabalho, este grupo foi claramente mais capturado de dia em Junho, capturado tanto de dia como de noite em Agosto e ligeiramente mais capturado de noite em Novembro. Quanto ao grupo dos Cladocera, segundo Boltovskoy (1999) estes permanecem nas camadas superficiais principalmente em águas estratificadas, como é o caso da zona do Condor durante o Verão, explicando o seu aparecimento tanto de dia como de noite. Por fim, no que diz respeito aos copépodes, de acordo com Morales et al. (1993), os organismos acima dos 500 µm (principalmente os do género Pleromamma) sobem à superfície principalmente durante a noite.

Segundo Cushing (1989) o desenvolvimento do fitoplâncton em águas oligotróficas inicia-se com o aumento de pequenas diatomáceas, seguido de diatomáceas de maiores dimensões, flagelados e cianobactérias e, só mais tarde, de dinoflagelados. Os resultados de Março dizem respeito, como já foi mencionado, ao início do bloom primaveril e estão assim de acordo com o referido por Cushing, no que diz respeito à maior abundância de diatomáceas comparativamente com os dinoflagelados, encontrando-se os cocolitóforos num patamar intermédio. O mesmo foi verificado durante o Verão, enquanto no Outono o grupo mais representativo de fitoplâncton foi o dos cocolitóforos, que ultrapassou as diatomáceas. No relatório de Neto et al. (2009) verificou-se que para as zonas de maior profundidade, tanto em Maio como em Julho de 2009, os cocolitóforos foram o grupo de fitoplâncton mais abundante, seguido das diatomáceas e só
depois dos dinoflagelados. Hirch et al. (2009) realizaram estudos sobre a produção primária no monte submarino Sedlo, nos quais os coccolítóforos foram o grupo dominante na Primavera (Abril) e Verão (Julho) de 2006 encontrando-se ausentes no Outono (Novembro). Contudo, em Novembro de 2003 e Abril de 2004 as diatomáceas dominaram sobre os dinoflagelados e estes sobre as diatomáceas em Julho de 2004. Por aqui se pode verificar que estes padrões se alteram de ano para ano não sendo de todo fiável uma comparação directa entre os diferentes trabalhos e explicando assim as diferenças encontradas entre eles. No período Inverno/Primavera notou-se um sinal forte da Primavera na estação do canal Faial - Pico, assim como a Este e a Sudoeste do topo do Condor, muito provavelmente resultante do efeito combinado das correntes de maré e topografia. De facto, resultados não publicados (Oceanography Section, 2011) demonstram que o coeficiente vertical de difusão turbulento (Kz, cm²/s) varia significativamente na região do Condor e ao longo dos dois anos de amostragens, reflectindo a maior ou menor capacidade de mistura (turbulência na vertical) da coluna de água. Em especial, e para todos os períodos sazonais amostrados, os maiores valores deste coeficiente foram encontrados no declive Este do Condor.

Cullen (1982) refere que o fitoplâncton pode ter mecanismos comportamentais que reflitam a sua posição vertical na coluna de água, dizendo que os fitoplanctontes com mobilidade, como os dinoflagelados, podem apresentar migrações diárias verticais. Se os nossos resultados apresentassem variações diárias esta poderia ser uma explicação para a dicotomia observada nos perfis de fitoplâncton em profundidade. No entanto, o que pode explicar a dicotomia acima referida é o efeito de sombra que, segundo Shigesada & Okubo (1981) diz respeito à atenuação verificada na intensidade luminosa pela presença de grande quantidade de organismos na coluna de água, provocando uma diminuição da abundância desses organismos após esse efeito. Após o efeito da atenuação da luz ter passado, volta a notar-se um aumento do crescimento do fitoplâncton, formando os dois picos verificados nos nossos resultados. Segundo os autores acima indicados, este efeito tem um papel muito importante nos blooms de produtores primários, pois a inexistência deste favoreceria o crescimento muito rápido do fitoplâncton e rápido esgotamento dos nutrientes na coluna de água.

Para a região do banco submarino Condor (e apenas para as 7 estações de amostragem contempladas neste estudo) foram registados 65 géneros e espécies de fitoplâncton, 5 grupos não
específicos e 2 não contabilizados como fitoplâncton. Para o zooplâncton foram registados 31 grupos taxonómicos abrangentes e um género de copépodes Calanoida.

A análise MDS efectuada distinguiu de forma evidente alguns grupos ao nível da diversidade da composição específica de fitoplâncton (amostras referentes à estação do ano Inverno/Primavera, bem como as referentes às estações mais costeiras e “fora” do banco Condor e à zona a Noroeste do topo do banco) e de forma menos evidente as estações referentes ao topo do Condor e a Oeste do mesmo. Na análise MDS do zooplâncton também se notou um agrupamento das amostras referentes às diferentes estações do ano, havendo uma ligeira mistura entre as amostras de Junho e de Agosto, as quais pertencem ambas ao período do Verão. A análise de similaridade ANOSIM não revelou para o fitoplâncton a existência de diferenças significativas entre as estações ao nível do seu “local”, mas mostrou diferenças ao nível da “época do ano” e da “direcção” de cada estação em relação ao topo do Condor. Para os produtores secundários também foram apresentadas diferenças significativas dentro e entre épocas do ano. A análise Cluster agrupou as várias estações amostradas para os produtores primários em 13 grupos com diferenças significativas, mostrando que apenas as estações do período Inverno/Primavera representam um grupo distinto e semelhante entre si, enquanto que para o zooplâncton a mesma análise determinou apenas três grupos, o que mostra menor diversidade ao nível destes organismos.

A análise multivariada BEST – BIOENV não revelou nenhuma relação forte entre qualquer uma das variáveis ambientais analisadas com as variáveis biológicas (abundância e diversidade planctónica), pelo que provavelmente seria necessário obter um maior número de dados ambientais para se obterem correlações relevantes entre alguma dessas variáveis e a matriz de dados biológica. Contudo, a maior correlação foi detectada entre a temperatura e o fitoplâncton, assim como entre os fitopigmentos e o zooplâncton.

Foi possível verificar que, aplicando o índice de diversidade E\textsubscript{100}, o maior número de taxa se situa na profundidade respeitante à profundidade de clorofila máxima ou, pelo menos, nos 25 m mais próximos, correspondendo também à zona de maior concentração de oxigénio dissolvido. Isto acontece porque, onde se encontra maior diversidade de organismos é também onde o fitoplâncton geral é mais abundante, havendo assim maior concentração dos pigmentos fotossintéticos e maior disponibilidade de oxigénio produzido durante a fotossíntese. Também Agustí & Duarte (1999) defendem que a distribuição do fitoplâncton é caracterizada pela
formação de uma DCM. Pela representação de curvas de dominância percebeu-se que a estação Inverno/Primavera apresenta grupos taxonómicos que contribuem para os resultados com o facto de possuírem grandes abundâncias, como por exemplo as diatomáceas *Chaetoceros* sp.. Nas comunidades zooplanctónicas foi encontrado um maior número de grupos taxonómicos durante os meses de Verão e menor no Outono e Primavera, o que se comprovou pelas curvas de dominância que mostram menor diversidade e espécies mais abundantes no Outono e Primavera.

Comparando as diversidades e abundâncias de fitoplâncton entre a região do banco submarino e a estação localizada entre ilhas verificou-se que o género *Chaetoceros* é mais representativo no canal entre o Faial e o Pico enquanto no banco só é relevante no Inverno/Primavera. No entanto, como para o canal, no Verão apenas existem dados de superfície e no Outono dados de duas profundidades correspondentes a apenas uma estação local, estes resultados de abundância são altamente influenciados pela falta de amostras que comprovem esses dados. No banco Condor, realçou-se a abundância das diatomáceas *Chaetoceros* sp., *Pseudo-nitzschia* sp., *Asterionellopsis* sp. e *Guinardia delicatula* e do cocolitóforo *Ophiaster* sp.. À parte destes, o grupo dos pequenos dinoflagelados é o único presente de forma consistente com grande abundância nas três estações do ano estudadas. O grupo dos pequenos dinoflagelados é dos mais representados nas três épocas estudadas. No entanto, é importante referir que o método usado para contar este grupo pode levar a que o mesmo seja sub- ou sobrestimado, por se ter analisado uma amostra bastante pequena quando comparada com os restantes grupos. Estes resultados estão de acordo com Neto et al. (2009) quanto a algumas das diatomáceas mais abundantes, *Chaetoceros* sp. e *Pseudo-nitzschia* sp., pois segundo estes autores, estas espécies são representativas de ambientes com elevada turbulência e assim maior disponibilidade de nutrientes. No referido trabalho, o cocolitóforo mais abundante foi *Emiliania huxleyi*. Quanto aos organismos menos representativos das amostras encontrou-se maior diversidade no Condor do que no Canal. Mencionando agora apenas o Condor, o Inverno/Primavera é o período com menos taxa representados, destacando-se *Ophiaster* sp. e *Guinardia striata*, e no Verão *Chaetoceros* sp. e *Ophiaster* sp. O Outono apresenta um elevado grupo de organismos pouco representativos.

Em termos de diversidade zooplanctónica verificou-se que os copépodes perfazem um total de 95% em Março, 92% em Novembro, 84% em Agosto e 65% em Junho. Alguns dos estudos efectuados para o Noroeste do Atlântico e Açores apresentam para o Verão abundâncias de
copépodes entre 60 e 70% da abundância total de zooplâncton (Silva, 2000; Clark et al., 2001 e Huskin et al., 2001). A média de copépodes no Verão no Condor foi de 75%, mostrando assim um resultado semelhante aos dos outros autores. Martin & Christiansen (2009) referem para três montes submarinos no Noroeste do Atlântico que o grupo dos copépodes corresponde a cerca de dois terços da comunidade. Assim como em Silva (2000) ocorreu um bloom da ordem Cladocera nos meses de Verão, o que contribuiu para a diminuição do número de copépodes em termos de percentagem total. No presente estudo, foi registado em Junho e Agosto maior diversidade taxonómica do que em Março e Novembro, o que pode ser explicado não só pela variabilidade sazonal existente e já comprovada também para outras espécies ou grupos, mas também, pela reduzida percentagem de copépodes existente, permitindo o aparecimento de outros taxas. Com respeito aos taxa menos representativos constatou-se que os grupos Pleuromamma sp., Copepoda Cyclopoida, Larva de Bivalve, Appendicularia, Chaetognata e Ostracoda também apresentam concentrações consideráveis para a região, enquanto os restantes grupos são mais escassos. Em Silva (2000) os organismos pertencentes aos grupos Appendicularia e Chaetognata também foram considerados abundantes na região e o género Pleuromamma sp. também foi dos copépodes Calanoida mais abundantes.

A avaliação das comunidades fitoplanctónicas em profundidade revelou que nos seis extractos analisados se obtiveram abundâncias mais elevadas no Inverno/Primavera, sendo que para qualquer uma das épocas de estudo os valores máximos se encontraram junto à DCM. As curvas de dominância mostram que aos 5, 25 e 150 m existe menor diversidade na composição específica e espécies com maior abundância do que nos restantes extractos. No Condor não se verificou uma diferença nas espécies mais abundantes em profundidade, relativamente às mais abundantes encontradas nas várias épocas do ano, dominando os géneros Chaetoceros sp., Asterionellopsis sp., Pseudo-nitzschia sp. e Ophiaster sp., bem como o grupo dos pequenos dinoflagelados. No canal Faial – Pico, para além da Pseudoguinardia recta registada à superfície, dominam apenas as espécies Chaetoceros sp., Asterionellopsis sp., e Ophiaster sp.. É importante referir que em ambas as zonas, e sendo os resultados em profundidade derivados de uma média anual, nota-se uma forte influência das abundâncias registadas durante o mês de Março de 2010, nomeadamente a forte influência da espécie de diatomáceas Chaetoceros sp. que, segundo refere Savidge et al. (1995), está associada à ocorrência de blooms.
Em termos de distribuição fitoplanctónica espacial e temporal encontrou-se um padrão que mostra que quanto mais próximo da costa, maior a abundância de fitoplâncton (locais A e B), e no Inverno/Primavera também se notou uma elevada abundância nas estações locais C e E. Pelo contrário, a estação localizada no topo do banco, a Norte e a Oeste desta, apresentam menores abundâncias. Estes resultados corroboram os resultados preliminares de caracterização da circulação e dinâmica oceânicas na região do Condor. De facto, é evidente em certas regiões (por exemplo no topo do banco, encosta Norte e ainda a Nordeste do banco) o aumento da turbulência por mistura diapicnica e ainda por efeito das correntes de maré na coluna de água e no fundo (increased bottom tidal mixing), que provocam padrões de circulação muito variáveis principalmente nestes locais (Oceanography Section, 2011). Estes resultados estão também reflectidos em mapas horizontais preliminares sobre a distribuição de oxigénio e turbidez aos 100 m de profundidade que mostram claramente valores mais altos de oxigénio nas estações a Nordeste do Condor, entre a ilha do Faial e o banco, e a Sudeste do mesmo, do que propriamente no topo do Condor (Oceanography Section, 2011). Por outro lado, em termos da distribuição espacial e temporal do zooplâncton não se verificou a existência de um padrão geográfico claro de maior abundância em nenhuma estação específica e para todos os meses amostrados.

Por fim, é importante realçar que, naturalmente, após a conclusão da análise de todas as estações amostradas no âmbito do projecto CONDOR se poderão vir a notar algumas variações nos resultados aqui apresentados, de onde poderá sair também um maior número de espécies registadas para a área referida.

6. Considerações finais
O presente trabalho compreende um estudo sobre a caracterização de comunidades planctónicas no banco submarino Condor (SO da Ilha do Faial, Açores) e sua relação com os factores ambientais subjacentes. Pretendeu-se avaliar a diversidade taxonómica e respectivas abundâncias dos primeiros dois níveis da teia trófica numa série espacial e temporal na região de estudo, assim como avaliar quais os principais factores responsáveis pelas variações detectadas.

Os principais resultados obtidos mostram que a coluna de água se encontra mais estratificada no Verão e bastante misturada no Inverno/Primavera. Através de outros estudos sabe-se que, tanto a estratificação como a disponibilidade de nutrientes são os principais factores responsáveis pela
distribuição vertical dos produtores primários e que, quanto mais misturada a camada superficial da água, menor a limitação ao nível dos nutrientes. De facto, os nossos resultados suportam este conceito uma vez que, revelam maiores concentrações planctónicas na época em que a coluna de água ainda se apresentava significativamente misturada (Inverno/Primavera).

Os nossos resultados também permitiram concluir que a profundidade máxima de clorofila a (DCM) no banco submarino Condor varia entre os 0,05 mg.m\(^{-3}\) aos 75 m no Verão e os 0,2 mg.m\(^{-3}\) aos 25 m no fim do Inverno. A profundidade da DCM está também directamente relacionada com a profundidade onde se registou maior diversidade e abundância fitoplanctónica. Contudo, ao contrário do que se esperava, a concentração máxima de oxigénio dissolvido foi registada no Verão e não no período de maior produtividade (Inverno/Primavera), possivelmente devido ao facto de em Julho a abundância de organismos pertencentes ao picoplâncton ser muito mais elevada do que em Março, contribuindo significativamente para os valores de oxigénio obtidos.

Os produtores secundários, tal como os primários, também são mais abundantes em Março e mais escassos em Novembro, concluindo-se que quanto menor o fitoplâncton disponível menor o desenvolvimento das comunidades zooplanctónicas da região. As maiores biomassas dos referidos consumidores foram presenciadas durante os períodos nocturnos do mês de Março.

Em termos de grandes grupos, constatou-se que as diatomáceas são os fitoplanctontes mais observados nos períodos Inverno/Primavera e Verão, enquanto que no Outono dominam os cocolitóforos. Uma outra observação importante foi que, provavelmente devido à orientação das correntes neste banco submarino serem dirigidas no sentido Este – Oeste, em termos espaciais em Março de 2010, o sinal forte da Primavera foi primeiramente registado nas estações a Este e Sudeste do topo do banco, para além da estação no canal entre o Faial e o Pico.

Quanto à diversidade taxonómica encontrada no local em estudo concluiu-se que, para além da elevada abundância de pequenos dinoflagelados, também se destacou a riqueza em diatomáceas _Pseudo-nitzschia_ sp. e _Guinardia delicatula_ no Verão, assim como do cocolitóforo _Ophiaster_ sp. no Outono e da diatomácea _Asterionellopsis_ sp. no Inverno/Primavera. Com respeito ao zooplâncton, os copépodes atingem entre 65% da abundância total em Junho e 95% em Março e os Cladocera também são uma ordem bastante representada durante o Verão.
Por fim, foram encontradas diferenças significativas ao nível qualitativo e quantitativo do fitoplâncton no Inverno/Primavera em relação às outras épocas estudadas e entre as três estações do ano relativamente ao zooplâncton. Embora não tenha sido encontrado nenhum factor ambiental que mostrasse grande relação com as variações encontradas ao nível biológico, os resultados indicaram que aquele que melhor explica o comportamento fitoplanctónico é a temperatura da água (factor abiótico) e o zooplanctónico a concentração dos fitopigmentos (factor biótico, relação predador/presa).

Com a realização deste trabalho constatou-se igualmente que são muito poucos os estudos que se centram nas variações da riqueza e diversidade taxonómica essencialmente ao nível das comunidades fitoplanctónicas em montes submarinos, referindo-se a maioria a medidas de biomassas. Para melhor entender a totalidade dos processos existentes neste tipo de hotspot marinho é fundamental a continuidade de estudos ao nível oceanográfico e planctónico sazonalmente, uma vez que são as variações oceanográficas e planctónicas que condicionam todas as outras comunidades lá existentes. Para tal, seria crucial a existência de estações de amostragem fixas onde se pudessem realizar análises contínuas ao longo do tempo. A existência de estudos deste tipo seria ainda de grande importância para o melhoramento dos modelos realizados para ecossistemas de montes submarinos.

Por fim, o presente trabalho contribui de forma crucial para o melhor entendimento das relações existentes entre as comunidades planctónicas, bem como a importância de ambas em ecossistemas de montes e bancos submarinos.

7. Referências Bibliográficas

Referências Electrónicas

Anexos

Anexo A - Tabela sumária dos códigos de cada cruzeiro e dos parâmetros recolhidos nos mesmos

<table>
<thead>
<tr>
<th>Ano</th>
<th>Cruzeiro</th>
<th>Data</th>
<th>Códigos utilizados</th>
<th>Parâmetros medidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>CONDOR-PAC-MAR09</td>
<td>9,10,17,18 Março</td>
<td>Mar_09 & P_Mar_09</td>
<td>Peso seco de Zoo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Abundância de Zoo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diversidade de Zoo</td>
</tr>
<tr>
<td></td>
<td>CONDOR-PAC-JUN09</td>
<td>16-18 Junho</td>
<td>Jun_09 & V_Jun_09</td>
<td>Peso seco de Zoo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Abundância de Zoo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diversidade de Zoo</td>
</tr>
<tr>
<td></td>
<td>CONDOR-OCE-2009-V01</td>
<td>28-31 Julho</td>
<td>V_09</td>
<td>Temperatura</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Salinidade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fluorescência</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Concent. de Chl a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oxigénio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Turbidez</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Abundância de Fito</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diversidade de Fito</td>
</tr>
<tr>
<td></td>
<td>CONDOR-PAC-AGO09</td>
<td>11-13 Agosto</td>
<td>Ago_09 & V_Ago_09</td>
<td>Peso seco de Zoo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Abundância de Zoo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diversidade de Zoo</td>
</tr>
<tr>
<td></td>
<td>CONDOR-OCE-2009-O01</td>
<td>5,6,9 Novembro</td>
<td>O_09</td>
<td>Temperatura</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Salinidade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fluorescência</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Concent. de Chl a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oxigénio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Turbidez</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Abundância de Fito</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diversidade de Fito</td>
</tr>
<tr>
<td></td>
<td>CONDOR-PAC-NOV09</td>
<td>25-26 Novembro</td>
<td>Nov_09 & O_Nov_09</td>
<td>Peso seco de Zoo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Abundância de Zoo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diversidade de Zoo</td>
</tr>
<tr>
<td>2010</td>
<td>CONDOR-OCE-2010-P01</td>
<td>9-12 Março</td>
<td>I/P_10</td>
<td>Temperatura</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Salinidade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fluorescência</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Concent. de Chl a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oxigénio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Turbidez</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Abundância de Fito</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diversidade de Fito</td>
</tr>
</tbody>
</table>
Anexo B – Fitoplâncton

Listagem dos grupos taxonómicos registados

Alga

Amphidoma caudata Halldal 1953
Amphisolenia globifera Stein 1883
Anoplosolenia brasiliensis (Lohmann) Deflandre 1952
Asterionellopsis sp.
Braarudosphaera bigelowii (Gran & Braarud) Deflandre 1974
Calcidiscus leptoporus (G.Murray & V.H.Blackman) Loeblich Jr.& Tappan 1978
Calciopappus caudatus Gaarder & Ramsfjell 1954
Calciosolenia murrayi Gran 1912
Calyptrosphaera sp.
Cerataulina pelagica (Cleve) Hendey 1937
Ceratium furca (Ehrenberg) Claparède & Lachmann 1859
Ceratium fusus (Ehrenberg) Dujardin 1841
Ceratium tripos (O.F.Müller) Nitzsch 1817
Ceratocorys horrida Stein 1883
Chaetoceros sp.

Ciliado

Cladopyxis brachiolata Stein 1883
Cocolitoforo NI
Coronosphaera sp.
Coscinodiscus sp.
Cylindrotheca closterium (Ehrenberg) Reimann & J.C.Lewin 1964
Dactyliosolen fragilissimus (Bergon) Hasle in Hasle & Syvertsen 1996
Dactyliosolen mediterraneus (Peragallo) Peragallo 1892
Detonula pumila (Castracane) Gran 1900
*Diatomácea NI
*Diatomácea pinolada
Dictyocha fibula Ehrenberg 1839
Dictyocha sp.
Dinoflagelado NI
Dinophysis sp.
Eucampia sp.

Guinardia delicatula (Cleve) Hasle in Hasle & Syvertsen 1997
Guinardia flaccida (Castracane) H.Peragallo 1892
Guinardia sp.
Guinardia striata (Stolterfoth) Hasle in Hasle & Syvertsen 1996
Gymnodinium sp.
Gyrodinium fusiforme Kofoid & Swezy 1921
Gyrodinium sp.
Hemiaulus hauckii Grunow ex Van Heurck 1882
Leptocylindrus sp.
Michaelsarsia sp.
Micrachantodinium sp.
Micrachantodinium setifera (Lohmann) Deflandre 1937
Ophiaster sp.
Ornithocercus sp.
Oxytoxum nanum Halldal 1953
Oxytoxum scolopax Stein 1883
Oxytoxum sp.
Pequenos dinoflagelados
Peridinium sp.
Peridinium ovum Matvienko 1938
Planktoniella sol (C.G.Wallich) Schütt 1892
Podolampas sp.
Proboscia alata (Brightwell) Sundström 1986
Prorocentrum dentatum Stein 1883
Prorocentrum sp.
Protoperidinium sp.
Pseudoguinardia recta von Stosch 1986
Pseudo-nitzschia sp.
Pyrocystis elegans Pavillard 1931
Pyrocystis robusta Kofoid 1907
Rhabdosphaera sp.
Rhisosolenia sp.
Scyphosphaera apsteinii Lohmann 1902
Skeletonema sp.
Solenicola setigera Pavillard 1916
Syracosphaera sp.
Thalassionema nitzschioides (Grunow) Mereschkowsky 1902
Thalassiosira sp.
Torodinium sp.
Umbilicosphaera sibogae (Weber-van Bosse) Gaarder 1970
Figura 1 – Dendograma Cluster baseado nas similaridades Bray-Curtis que agrupa as estações com o mesmo nível de similaridade para os períodos Verão de 2009 (“V_09”, representado por quadrados azuis), Outono de 2009 (“O_09”, representado por losangos vermelhos) e Inverno/Primavera de 2010 (“I/P_10”, representado por círculos verdes). Avermelho no dendograma estão representados todos os grupos sem diferenças significativas obtidos pela análise SIMPROF. As restantes estações analisadas no período “I/P_10”, por não conterem diferenças significativas estão apresentadas num único grupo pelo código “(A)”, a verde, à direita do dendograma.

Figura 3 – Representação de alguns dos organismos mais raros encontrados no banco do Condor e no canal Faial-Pico: 1 – Amphisolenia globifera.; 2 – Ceratocorys horrida; 3 – Micrachantodinium setifera; 4 – Amphidoma caudata; 5 – Ornithocercus sp.
Tabela I – Resultados obtidos pela análise SIMPER, para o factor “Época do Ano”. Apresenta-se a similaridade obtida dentro dos grupos através da contribuição de cada espécie para essa similaridade total. A similaridade é representada por “Sim”, o desvio padrão por “SD” e a percentagem de contribuição de cada grupo por “Contrib%”.

<table>
<thead>
<tr>
<th>Época do Ano</th>
<th>Média de Similaridade</th>
<th>Espécies</th>
<th>Abundância Média</th>
<th>Similaridade Média</th>
<th>Sim/SD</th>
<th>Contrib%</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_09</td>
<td>34,82</td>
<td>Dinoflagelado NI</td>
<td>2,48</td>
<td>3,93</td>
<td>1,38</td>
<td>11,28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudo-nitzschia sp.</td>
<td>3,54</td>
<td>3,49</td>
<td>0,73</td>
<td>10,03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coccolithofor NI</td>
<td>2,24</td>
<td>3,29</td>
<td>0,95</td>
<td>9,44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceratium furca</td>
<td>2,15</td>
<td>2,95</td>
<td>0,74</td>
<td>8,48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diatomácea pinolada</td>
<td>2,35</td>
<td>2,44</td>
<td>0,84</td>
<td>6,99</td>
</tr>
<tr>
<td>O_09</td>
<td>31,95</td>
<td>Ophiaster sp.</td>
<td>3,47</td>
<td>6,27</td>
<td>1,27</td>
<td>19,63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Umbilicosphaera sibogae</td>
<td>2,56</td>
<td>3,23</td>
<td>0,74</td>
<td>10,12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhabdosphaera sp.</td>
<td>1,92</td>
<td>2,61</td>
<td>0,62</td>
<td>8,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chaetoceros sp.</td>
<td>2,56</td>
<td>1,92</td>
<td>0,51</td>
<td>6,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calcidiscus leptoporus</td>
<td>1,53</td>
<td>1,73</td>
<td>0,53</td>
<td>5,42</td>
</tr>
<tr>
<td>I/P_10</td>
<td>57,68</td>
<td>Ophiaster sp.</td>
<td>6,03</td>
<td>8,51</td>
<td>3,99</td>
<td>14,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chaetoceros sp.</td>
<td>5,74</td>
<td>5,65</td>
<td>1,56</td>
<td>9,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dictyocha fibula</td>
<td>3,99</td>
<td>5,21</td>
<td>2,3</td>
<td>9,03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dictyocha sp.</td>
<td>3,96</td>
<td>5,09</td>
<td>2,8</td>
<td>8,83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solenicola setigera</td>
<td>3,7</td>
<td>3,72</td>
<td>1,13</td>
<td>6,44</td>
</tr>
</tbody>
</table>
Tabela II - Resultados obtidos pela análise SIMPER, para o factor “Época do Ano”, que representam a contribuição de cada espécie para a dissimilaridade entre grupos. A abundância é representada por “Abund”, a dissimilaridade por “Diss”, o desvio padrão por “SD” e a percentagem de contribuição de cada grupo por “Contrib%”.

<table>
<thead>
<tr>
<th>Época do Ano</th>
<th>Média de Dissimilaridade</th>
<th>Espécies</th>
<th>Abund Média Grupo V_09</th>
<th>Abund Média Grupo O_09</th>
<th>Diss Média</th>
<th>Diss/SD</th>
<th>Contrib%</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_09 & O_09</td>
<td>71,34</td>
<td>Pseudo-nitzschia sp.</td>
<td>3,54</td>
<td>1,85</td>
<td>4,04</td>
<td>1,12</td>
<td>5,66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ophiaster sp.</td>
<td>2,75</td>
<td>3,47</td>
<td>3,66</td>
<td>1,24</td>
<td>5,13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chaetoceros sp.</td>
<td>2,26</td>
<td>2,56</td>
<td>3,27</td>
<td>1,14</td>
<td>4,59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Umbilicosphaera sibogae</td>
<td>0,54</td>
<td>2,56</td>
<td>2,89</td>
<td>1,15</td>
<td>4,06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceratium furca</td>
<td>2,15</td>
<td>0,52</td>
<td>2,8</td>
<td>1,07</td>
<td>3,92</td>
</tr>
<tr>
<td>V_09 & I/P_10</td>
<td>67,75</td>
<td>Chaetoceros sp.</td>
<td>2,26</td>
<td>5,74</td>
<td>3,84</td>
<td>1,48</td>
<td>5,67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ophiaster sp.</td>
<td>2,75</td>
<td>6,03</td>
<td>3,44</td>
<td>1,22</td>
<td>5,08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dictyocha sp.</td>
<td>0,44</td>
<td>3,96</td>
<td>3,19</td>
<td>2,18</td>
<td>4,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guinardia striata</td>
<td>1,34</td>
<td>3,96</td>
<td>2,95</td>
<td>1,33</td>
<td>4,36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asterionellopsis sp.</td>
<td>0,52</td>
<td>3,74</td>
<td>2,89</td>
<td>1,08</td>
<td>4,27</td>
</tr>
<tr>
<td>O_09 & I/P_10</td>
<td>65,91</td>
<td>Chaetoceros sp.</td>
<td>2,56</td>
<td>5,74</td>
<td>4,18</td>
<td>1,45</td>
<td>6,34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dictyochara fibula</td>
<td>0,58</td>
<td>3,99</td>
<td>3,48</td>
<td>1,93</td>
<td>5,27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dictyochara sp.</td>
<td>0,48</td>
<td>3,96</td>
<td>3,43</td>
<td>2,09</td>
<td>5,21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guinardia striata</td>
<td>1,73</td>
<td>3,96</td>
<td>3,16</td>
<td>1,27</td>
<td>4,79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asterionellopsis sp.</td>
<td>0,75</td>
<td>3,74</td>
<td>3,11</td>
<td>1,08</td>
<td>4,71</td>
</tr>
</tbody>
</table>
Tabela III - Resultados obtidos pela análise SIMPER, para o factor “local” de amostragem, que apresenta a similaridade obtida dentro dos grupos através da contribuição de cada espécie para essa similaridade total. A similaridade é representada por “Sim”, o desvio padrão por “SD” e a percentagem de contribuição de cada grupo por “Contrib%”.

<table>
<thead>
<tr>
<th>Local</th>
<th>Média de Similaridade</th>
<th>Espécies</th>
<th>Abundância Média</th>
<th>Sim Média</th>
<th>Sim/SD</th>
<th>Contrib%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condor</td>
<td>35,29</td>
<td>Ophiaster sp.</td>
<td>4,27</td>
<td>5,71</td>
<td>1,27</td>
<td>16,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cocolitoforo NI</td>
<td>2,13</td>
<td>2,6</td>
<td>0,79</td>
<td>7,38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solenicola setigera</td>
<td>2,48</td>
<td>2,2</td>
<td>0,6</td>
<td>6,24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dactyliosolen mediterraneus</td>
<td>2,41</td>
<td>2,18</td>
<td>0,6</td>
<td>6,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chaetoceros sp.</td>
<td>3,05</td>
<td>2,13</td>
<td>0,65</td>
<td>6,05</td>
</tr>
<tr>
<td>Fora</td>
<td>48,19</td>
<td>Chaetoceros sp.</td>
<td>6,52</td>
<td>8</td>
<td>2,81</td>
<td>16,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ophiaster sp.</td>
<td>4,65</td>
<td>5,07</td>
<td>1,44</td>
<td>10,52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guinardia striata</td>
<td>4,57</td>
<td>4,73</td>
<td>1,36</td>
<td>9,82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Umbilicosphaera sibogae</td>
<td>3,4</td>
<td>3,85</td>
<td>1,91</td>
<td>7,99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calcidiscus leptoporus</td>
<td>2,54</td>
<td>3,1</td>
<td>1,41</td>
<td>6,44</td>
</tr>
</tbody>
</table>

Tabela IV - Resultados obtidos pela análise SIMPER, para o factor local de amostragem, que representam a contribuição de cada espécie para a dissimilaridade entre grupos. A abundância é representada por “Abund”, a dissimilaridade por “Diss”, o desvio padrão por “SD” e a percentagem de contribuição de cada grupo por “Contrib%”.

<table>
<thead>
<tr>
<th>Local</th>
<th>Média de Dissimilaridade</th>
<th>Espécies</th>
<th>Abund Média</th>
<th>Abund Média</th>
<th>Diss Média</th>
<th>Diss/SD</th>
<th>Contrib%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condor & Fora</td>
<td>62,37</td>
<td>Chaetoceros sp.</td>
<td>3,05</td>
<td>6,52</td>
<td>4,08</td>
<td>1,41</td>
<td>6,55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guinardia striata</td>
<td>1,99</td>
<td>4,57</td>
<td>3,21</td>
<td>1,35</td>
<td>5,15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asterionellopsis sp.</td>
<td>1,53</td>
<td>3,43</td>
<td>2,91</td>
<td>1,06</td>
<td>4,67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudo-nitzschia sp.</td>
<td>2,31</td>
<td>2,78</td>
<td>2,68</td>
<td>1,07</td>
<td>4,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ophiaster sp.</td>
<td>4,27</td>
<td>4,65</td>
<td>2,48</td>
<td>1,01</td>
<td>3,98</td>
</tr>
</tbody>
</table>
Tabela V – Representação do teste global e dos 10 melhores resultados de variáveis ambientais que explicam o padrão biológico, obtidos através de uma análise BEST (BIO-ENV). As variáveis consideradas são: 1 – Profundidade máxima (m); 2 – Temperatura (°C); 3 – Salinidade; 4 – Concentração de clorofila a (mg.m$^{-3}$) e 5 – Concentração de feofitina a (mg.m$^{-3}$).

<table>
<thead>
<tr>
<th>Teste Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Statistic (Rho)</td>
</tr>
<tr>
<td>Nível de Significância</td>
</tr>
<tr>
<td>Nº Permutações</td>
</tr>
<tr>
<td>Nº de Permutações > Rho</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Melhores Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº da Variável</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Anexo C – Zooplâncton

Listagem dos grupos taxonómicos registados

- Achantharia
- Amphipoda
- Appendicularia
- Cephalopoda
- Chaetognatha
- Cladocera
- Copepoda Calanoida
- Copepoda Cyclopoida
- Copepoda Poecilostomatoida
- Ctenophora
- Cubomedusa
- Doliolida
- Euphasiacea
- Foraminifera
- Hydromedusa
- Larva de Bivalve
- Larva de Cirripede
- Larva de Polychaeta
- Larva de Teleosteo
- Larvas de Decapoda
- Mysidacea
- Náuplio de Cirripede
- Ostracoda
- Ovo de Teleosteo
- Pleuromamma sp.
- Polychaeta
- Pteropoda
- Radiolaria (?)
- Radiolaria Phaeodaria
- Radiolaria Policystina
- Salpida
- Siphonophora
Figura 4 - Dendograma Cluster baseado nas similaridades Bray-Curtis que agrupa as estações com o mesmo nível de similaridade para os períodos Primavera_Março (“Mar_09”, representado por losangos verdes), Verão_Junho (“Junh_09”, representado por triângulos azuis escuros), Verão_Agosto (“Ago_09”, representado por triângulos azuis claros) e Outono_Novembro (“Nov_09”, representado por quadrados vermelhos). Avermelho no dendograma estão representados todos os grupos sem diferenças significativas obtidos pela análise SIMPROF.
Figura 5 – Representação dos grupos de zooplâncton mais vezes encontrados no banco Condor: 1 – Copepoda Calanoida; 2 – Cladocera; 3 – *Pleuromamma* sp.; 4 – Chaetognata; 5 – Copepoda Poecilostomatoida; 6 – Appendicularia; 7 – Copepoda Cyclopoida; 8 – Larva de Bivalve; 9 – Euphasiacea; 10 – Dolioloda; 11 – Pteropoda e 12 – Ostracoda.

Figura 6 – Representação de um grupo de zooplâncton raramente registado no banco Condor: Cephalopoda.
Tabela VI - Resultados obtidos pela análise SIMPER, para o factor “Época do Ano”, que apresenta a similaridade obtida dentro dos grupos através da contribuição de cada grupo taxonómico para essa similaridade total. A similaridade é representada por “Sim”, o desvio padrão por “SD” e a percentagem de contribuição de cada grupo por “Contrib%”.

<table>
<thead>
<tr>
<th>Época do Ano</th>
<th>Média de Similaridade</th>
<th>Taxa</th>
<th>Abundância Média</th>
<th>Sim Média</th>
<th>Sim/SD</th>
<th>Contrib%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar_09</td>
<td>64,24</td>
<td>Copepoda Calanoida</td>
<td>0,51</td>
<td>46,71</td>
<td>3,63</td>
<td>72,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copepoda Poecilostomatoida</td>
<td>0,24</td>
<td>16,32</td>
<td>1,85</td>
<td>25,4</td>
</tr>
<tr>
<td>Jun_09</td>
<td>60,3</td>
<td>Copepoda Poecilostomatoida</td>
<td>0,18</td>
<td>24,84</td>
<td>2,38</td>
<td>41,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copepoda Calanoida</td>
<td>0,17</td>
<td>20,86</td>
<td>2,6</td>
<td>34,59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cladocera</td>
<td>0,1</td>
<td>10,62</td>
<td>1,63</td>
<td>17,61</td>
</tr>
<tr>
<td>Ago_09</td>
<td>69,39</td>
<td>Copepoda Poecilostomatoida</td>
<td>0,18</td>
<td>34,61</td>
<td>4,52</td>
<td>49,88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copepoda Calanoida</td>
<td>0,15</td>
<td>27,44</td>
<td>3,96</td>
<td>39,54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cladocera</td>
<td>0,04</td>
<td>3,22</td>
<td>0,86</td>
<td>4,65</td>
</tr>
<tr>
<td>Nov_09</td>
<td>71,67</td>
<td>Copepoda Calanoida</td>
<td>0,17</td>
<td>43,72</td>
<td>2,86</td>
<td>61,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copepoda Poecilostomatoida</td>
<td>0,09</td>
<td>23,56</td>
<td>3,63</td>
<td>32,88</td>
</tr>
</tbody>
</table>
Tabela VII - Resultados obtidos pela análise SIMPER, para o factor “Época do Ano”, que representam a contribuição de cada grupo taxonómico para a dissimilaridade entre grupos. A dissimilaridade é representada por “Diss”, a abundância por “Abund”, o desvio padrão por “SD” e a percentagem de contribuição de cada grupo por “Contrib%”.

<table>
<thead>
<tr>
<th>Época do Ano</th>
<th>Média de Diss.</th>
<th>Taxa</th>
<th>Abund Média</th>
<th>Abund Média</th>
<th>Diss Média</th>
<th>Diss/SD</th>
<th>Contrib%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ago_09 & Jun_09</td>
<td>37,37</td>
<td>Copepoda Calanoida</td>
<td>0,15</td>
<td>0,17</td>
<td>9,24</td>
<td>1,44</td>
<td>24,71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copepoda Poecilostomatoida</td>
<td>0,18</td>
<td>0,18</td>
<td>9,19</td>
<td>1,28</td>
<td>24,58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cladocera</td>
<td>0,04</td>
<td>0,1</td>
<td>8,48</td>
<td>1,49</td>
<td>22,68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chaetognata</td>
<td>0,02</td>
<td>0,03</td>
<td>2,18</td>
<td>0,94</td>
<td>5,82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Larva de Bivalve</td>
<td>0</td>
<td>0,02</td>
<td>0</td>
<td>0,46</td>
<td>5,62</td>
</tr>
<tr>
<td>Ago_09 & Nov_09</td>
<td>36,96</td>
<td>Copepoda Poecilostomatoida</td>
<td>0,18</td>
<td>0,09</td>
<td>14,1</td>
<td>1,45</td>
<td>38,15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copepoda Calanoida</td>
<td>0,15</td>
<td>0,17</td>
<td>11,59</td>
<td>1,29</td>
<td>31,35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cladocera</td>
<td>0,04</td>
<td>0</td>
<td>5,36</td>
<td>0,86</td>
<td>14,49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Appendicularia</td>
<td>0,01</td>
<td>0,01</td>
<td>2,38</td>
<td>0,85</td>
<td>6,44</td>
</tr>
<tr>
<td>Jun_09 & Nov_09</td>
<td>47,52</td>
<td>Copepoda Poecilostomatoida</td>
<td>0,18</td>
<td>0,09</td>
<td>12,05</td>
<td>1,47</td>
<td>25,36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copepoda Calanoida</td>
<td>0,17</td>
<td>0,17</td>
<td>11,92</td>
<td>1,37</td>
<td>25,09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cladocera</td>
<td>0,1</td>
<td>0</td>
<td>11,48</td>
<td>1,87</td>
<td>24,15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Larva de Bivalve</td>
<td>0,02</td>
<td>0</td>
<td>2,38</td>
<td>0,47</td>
<td>5,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chaetognata</td>
<td>0,03</td>
<td>0</td>
<td>2,13</td>
<td>0,84</td>
<td>4,49</td>
</tr>
<tr>
<td>Ago_09 & Mar_09</td>
<td>49,21</td>
<td>Copepoda Calanoida</td>
<td>0,15</td>
<td>0,51</td>
<td>28,67</td>
<td>2,22</td>
<td>58,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copepoda Poecilostomatoida</td>
<td>0,18</td>
<td>0,24</td>
<td>12,04</td>
<td>1,48</td>
<td>24,47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cladocera</td>
<td>0,04</td>
<td>0</td>
<td>3,55</td>
<td>0,77</td>
<td>7,21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chaetognata</td>
<td>0,02</td>
<td>0</td>
<td>1,26</td>
<td>0,73</td>
<td>2,55</td>
</tr>
<tr>
<td>Jun_09 & Mar_09</td>
<td>53,22</td>
<td>Copepoda Calanoida</td>
<td>0,17</td>
<td>0,51</td>
<td>25,64</td>
<td>1,93</td>
<td>48,18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copepoda Poecilostomatoida</td>
<td>0,18</td>
<td>0,24</td>
<td>11,08</td>
<td>1,49</td>
<td>20,81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cladocera</td>
<td>0,1</td>
<td>0</td>
<td>7,75</td>
<td>1,56</td>
<td>14,56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Larva de Bivalve</td>
<td>0,02</td>
<td>0,01</td>
<td>1,87</td>
<td>0,51</td>
<td>3,51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chaetognata</td>
<td>0,03</td>
<td>0</td>
<td>1,45</td>
<td>0,73</td>
<td>2,72</td>
</tr>
<tr>
<td>Nov_09 & Mar_09</td>
<td>48,22</td>
<td>Copepoda Calanoida</td>
<td>0,17</td>
<td>0,51</td>
<td>29,96</td>
<td>2,07</td>
<td>62,12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copepoda Poecilostomatoida</td>
<td>0,09</td>
<td>0,24</td>
<td>13,81</td>
<td>1,72</td>
<td>28,64</td>
</tr>
</tbody>
</table>
Tabela VIII - Representação do teste global e dos 7 resultados de variáveis ambientais que expliquem o padrão biológico, obtidos através de uma análise BEST (BIO-ENV). As variáveis consideradas são: 1 – Concentração da clorofila a à superfície (mg.m\(^{-3}\)); 2 – Concentração de feofitina a à superfície (mg.m\(^{-3}\)) e 3 – Temperatura média (°C).

<table>
<thead>
<tr>
<th>Teste Global</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Statistic (Rho)</td>
<td>0,144</td>
</tr>
<tr>
<td>Nível de Significância</td>
<td>11%</td>
</tr>
<tr>
<td>Nº Permutações</td>
<td>99</td>
</tr>
<tr>
<td>Nº de Permutações > Rho</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Melhores Resultados</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº da Variável</td>
<td>Correlação</td>
</tr>
<tr>
<td>1</td>
<td>0,144</td>
</tr>
<tr>
<td>1</td>
<td>0,138</td>
</tr>
<tr>
<td>2</td>
<td>0,126</td>
</tr>
<tr>
<td>2</td>
<td>0,124</td>
</tr>
<tr>
<td>3</td>
<td>0,118</td>
</tr>
<tr>
<td>2</td>
<td>0,103</td>
</tr>
<tr>
<td>1</td>
<td>0,082</td>
</tr>
</tbody>
</table>