Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.3/2144
Título: An Approach to Variable Aggregation in Efficiency Analysis
Autor: Noncheva, Veska
Mendes, Armando B.
Silva, Emiliana
Palavras-chave: Canonical Correlation Analysis
Data Envelopment Analysis
Efficiency
Variable Aggregation
Multivariate Statistics
Data Mining
Data: 2009
Editora: Institute of Information Theories and Applications FOI ITHEA
Citação: Noncheva, Veska; Mendes, Armando Brito; Silva, Emiliana. "An Approach to Variable Aggregation in Efficiency Analysis". «International Book Series 'Information Science and Computing' : Classification, Forecasting, Data Mining», Book 8, (Supplement to the International Journal "Information Technologies & Knowledge", Volume 3): 97-104, 2009. http://hdl.handle.net/10525/1195.
Resumo: In the nonparametric framework of Data Envelopment Analysis the statistical properties of its estimators have been investigated and only asymptotic results are available. For DEA estimators results of practical use have been proved only for the case of one input and one output. However, in the real world problems the production process is usually well described by many variables. In this paper a machine learning approach to variable aggregation based on Canonical Correlation Analysis is presented. This approach is applied for efficiency estimation of all the farms in Terceira Island of the Azorean archipelago.
Descrição: Conference: The paper is selected from International Conference "Classification, Forecasting, Data Mining" CFDM 2009, Varna, Bulgaria, June-July 2009.
Peer review: yes
URI: http://hdl.handle.net/10400.3/2144
ISSN: 1313-0455 (Print)
1313-048X (Online)
Versão do Editor: http://hdl.handle.net/10525/1195
Aparece nas colecções:DME - Artigos em Revistas Internacionais / Articles in International Journals

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
ibs-08-p14.pdf113,93 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.